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Abstract

Simulated Coulomb cluster with
N = 500 particles

Dust particles in a com-
plex plasma usually ac-
cumulate a high nega-
tive charge inside a
plasma which is respon-
sible for their strong re-
pulsive interaction and
high coupling. When
confined in a parabolic
trap, these particles
form spherical clusters
with a characteristic
shell structure. In re-
cent years the phase
transition-like crossover
from a crystal to a liquid-
like state has attracted
high interest, e.g. [1] .

While the radial melting is now well understood, here we
concentrate on the loss of intra- shell order. The radial pair
correlation function ρ(rj) is well suited for homogeneous sys-
tem but has to be adapted to the spherical symmetry for fi-
nite clusters. Here, we present the Triple Correlation function
(TCF) as a sensitive tool for the investigation of intra-shell or-
der. The TCF is calculated from the “bonding angles“ of three
particles, a particle triple. This quantity is particularly well
suited to investigate the orientational order within spherical
cluster shells. The intra-shell bond order of Coulomb balls
with several hundreds of particles shows striking similarities
with a flat 2D system. At the melting region, the 30°-peak in
bond order between nearest and second-nearest neighbors
shows a clear drop.

System of interest
The dimensionless total potential energy of N parabolically
confined dust particles interacting via a Coulomb potential
reads

Etot =
N
∑
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r2
2
+
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rj

with r = |r | and rj = |r  − r j|.
• Distances are in units of 0 =
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• The energy is given in units of E0 =
�

mω2Q4

16π2ε2
0
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• The coupling parameter  = Einter
Etherm

relates the typical inter-
action energy with the thermal energy

Triple Correlation Function

Flat 2D systems.
The Triple Correlation Function (TCF) is to extend the pair dis-
tribution function g(r) by an angular component using pairs
of three particles [2].

A

B

C

dI

dII

φ

In the TCF, all pairs of three par-
ticles A, B and C are sampled.
For each pair
• two inter particle distances dI

and dII and

• the enclosed bond angle φ
are measured. Since none of the
three particles is distinguished,
each triple gives 6 contributions.

Distribution 7→ Correlation function.
The correlations g3 (dI, dII, φ) can be calculated from the sam-
pled distribution ρ3 (dI, dII, φ) by dividing by the uncorrelated
distribution ρncorr (dI, dII, φ):

g3 (dI, dII, φ) =
ρ (dI, dII, φ)

ρncorr (dI, dII, φ)
.

Uncorrelated three particle density in a homogeneous 2D sys-
tem with ρ0 =

N
V :

ρ3,ncorr (dI, dII, φ) = N · 4π · ρ0 · dI · dII

Spherical 3D systems.
In spherical Coulomb clusters, we investigate the intra-shell
order.
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All possible pairs of three parti-
cles A, B and C within one shell
are sampled. For each pair
• two angular pair distances ϑI

and ϑII and

• the enclosed bond angle φ
are measured.

Distribution 7→ Correlation function.

Normalization by uncorrelated three-particle density
• consider homogeneous spherical shell with equal areal par-

ticle density ρsp0 =
NS
4πR2

S

ρsp3,ncorr(ϑI, ϑII, φ) = N2S · ρ
sp
0 · sin (ϑI) · sin (ϑII) (1)

• integration over ϑI range 7→ ρ̄sp3,ncorr(ϑII, φ) ∝ sin (ϑII)

Quasi-hexagonal lattice

The outer shells of large Yukawa balls (N ¦ 100) show simi-
larities with an extended 2D system. The particles arrange
themselves within the shell on lattice, which is hexagonal in
wide areas [3]. But lattice positions with five nearest neigh-
bors always exist, even for →∞.
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Fig. 1: TCF of a Yukawa ball (left) and a flat 2D system (right)
The outer shell of N = 500 Yukawa ball carries 〈N5〉 = 193 on aver-
age. dI and ϑI respectively is integrated over the nearest neighbor
distance. Both system show clear peaks at φ = 60° indicating an
hexagonal lattice.

The intra-shell coupling strength calculated as

shell =
Q2

4πϵ0
shell
WS kBT

, (2)

with the intra-shell Wigner-Seitz radius

shell
WS =

2
p

Nshell
Rshell (3)

• Similar angular order in flat an spherical system
• Peaks are separated more clearly in the flat system.

Test: Extended 2D system
Bond angle distribution ρ(φ).
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.
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Different averages of the TCF
can be computed by integration
of ρ3 and ρ3,uncorr over one or
more coordinates.

• dI is integrated over nearest
neighbors

• dII is integrated over second
neighbors

⇒ bond angle distribution p(ϑ)

Extended flat 2D system
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Fig. 2: TCF of 2D Yukawa (κ = 1.0) cluster: By integration of ϑI and
ϑII, one pair of nearest neighbors and one pair of second neighbors
are selected. The resulting bond angle distribution p(φ) shows pro-
nounced peaks at multiplies of 30°.
Inset: The height of the 30°-peak shows a step-like increase at the
melting point.

• bond angle distribution of distant neighbors: similar behav-
ior

3D - Results

Bond angle distribution ρ(φ).

θII
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φ

As for 2D, averages of the TCF
are computed by integration of
ρ3 and ρ3,uncorr.

• ϑI is integrated over nearest
neighbors

• ϑII is integrated over second
neighbors

⇒ bond angle distribution p(ϑ)
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Fig. 3: TCF of 3D Coulomb ball with N = 500 particles: By integra-
tion of ϑI and ϑII, one pair of nearest neighbors and one pair of
second neighbors are selected. The resulting bond angle distribu-
tion p(φ) again shows pronounced peaks at multiplies of 30°.
Inset: The height of the 30°-peak shows an increase at the melting
region.

Angular intra-shell pair correlation g(ϑI).
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Fig. 4: Angular pair correlation function (PCF) on the outer shell:
By full integration of ϑI and φ, the inter-shell angular PCF is ex-
tracted. This function g(φ) corresponds to g(rj) in flat systems.
Inset: The height of the 2nd neighbor peak saturates at the melting
region.

Summary

It is shown that the three-particle correlation function is a
powerful and sensitive tool for structural analysis in strongly
correlated matter

• The intra shell configuration and the radial structure can
be analyzed in detail by the TCF during dynamic processes,
e.g. melting, excitation

• The TCF is not affected by a rotation of the entire cluster

• In contrast to other bond order parameters, no fixed refer-
ence direction is required

• The TCF is not restricted to discrete particles, also applica-
ble to density function, e.g. discharge filaments [4]

Outlook

• Calculate and subtract two-particle contributions to obtain
pure three-particle correlations

• Derivation of criteria for phase boundaries from the TCF

• Promising candidate: height of the 30°-peak in bond angle
distribution
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