The Triple Correlation Function of spherical dust clusters: CAU structural analysis and phase transition Christian-Albrechts-Universität zu Kiel

Hauke Thomsen¹, Patrick Ludwig¹ and Michael Bonitz¹ ¹Christian-Albrechts-Universität, Kiel, Germany

Abstract

Naturwissenschaftliche Fakultät

Mathematisch-

Simulated Coulomb cluster with $N = 500 \ particles$

Dust particles in a complex plasma usually accumulate a high negative charge inside a plasma which is responsible for their strong repulsive interaction and high coupling. When confined in a parabolic trap, these particles form spherical clusters characteristic with а shell structure. In recent years the phase transition-like crossover from a crystal to a liquidlike state has attracted high interest, e.g. [1] .

Distribution \mapsto **Correlation function.**

Normalization by *uncorrelated* three-particle density consider homogeneous spherical shell with equal areal particle density $\rho_0^{\rm sp} = \frac{N_{\rm S}}{4\pi R_{\rm c}^2}$ $\rho_{3,\text{uncorr}}^{\text{sp}}(\vartheta_{\text{H}},\vartheta_{\text{H}},\varphi) = N_{\text{S}}^{2} \cdot \rho_{0}^{\text{sp}} \cdot \sin(\vartheta_{\text{H}}) \cdot \sin(\vartheta_{\text{H}})$ (1) • integration over ϑ_{I} range $\mapsto \bar{\rho}_{3,uncorr}^{sp}(\vartheta_{II}, \varphi) \propto \sin(\vartheta_{II})$

Quasi-hexagonal lattice

The outer shells of large Yukawa balls ($N \gtrsim 100$) show similarities with an extended 2D system. The particles arrange themselves within the shell on lattice, which is hexagonal in wide areas [3]. But lattice positions with **five nearest neighbors always exist**, even for $\Gamma \rightarrow \infty$.

3D - Results

Bond angle distribution $\rho(\varphi)$.

As for 2D, averages of the TCF are computed by integration of ρ_3 and $\rho_{3,uncorr}$.

- ϑ_{I} is integrated over nearest neighbors
- ϑ_{\parallel} is integrated over second neighbors
- \Rightarrow bond angle distribution p(9)

While the radial melting is now well understood, here we concentrate on the loss of intra- shell order. The radial pair correlation function $\rho(r_{ii})$ is well suited for homogeneous system but has to be adapted to the spherical symmetry for finite clusters. Here, we present the Triple Correlation function (TCF) as a sensitive tool for the investigation of intra-shell order. The TCF is calculated from the "bonding angles" of three particles, a particle triple. This quantity is particularly well suited to investigate the orientational order within spherical cluster shells. The intra-shell bond order of Coulomb balls with several hundreds of particles shows striking similarities with a flat 2D system. At the melting region, the 30°-peak in bond order between nearest and second-nearest neighbors shows a clear drop.

System of interest

The dimensionless total potential energy of *N* parabolically confined dust particles interacting via a Coulomb potential reads

 $E_{tot} = \sum_{i=1}^{N} \frac{r_i^2}{2} + \sum_{i \le i} \frac{1}{r_{ij}}$ with $r_i = |\mathbf{r}_i|$ and $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$. • Distances are in units of $l_0 = \left(\frac{Q^2}{4\pi\epsilon_0 m\omega^2}\right)^{1/3}$

• The energy is given in units of $E_0 = \left(\frac{m\omega^2 Q^4}{16\pi^2 \epsilon_0^2}\right)^{1/3}$

Fig. 1: TCF of a Yukawa ball (left) and a flat 2D system (right) The outer shell of N = 500 Yukawa ball carries $\langle N_5 \rangle = 193$ on average. d_1 and θ_1 respectively is integrated over the nearest neighbor distance. Both system show clear peaks at $\varphi = 60^{\circ}$ indicating an hexagonal lattice.

The intra-shell coupling strength calculated as

Fig. 3: TCF of 3D Coulomb ball with N = 500 particles: By integration of $\overline{\vartheta}_{l}$ and ϑ_{ll} , one pair of nearest neighbors and one pair of second neighbors are selected. The resulting bond angle distribution $p(\varphi)$ again shows pronounced peaks at multiplies of 30°. Inset: The height of the 30°-peak shows an increase at the melting region.

Angular intra-shell pair correlation $g(\mathcal{P}_{I})$.

- The coupling parameter $\Gamma = \frac{E_{inter}}{E_{therm}}$ relates the typical interaction energy with the thermal energy

Triple Correlation Function

Flat 2D systems.

The Triple Correlation Function (TCF) is to extend the pair distribution function g(r) by an angular component using pairs of three particles [2].

In the TCF, all pairs of three particles A, B and C are sampled. For each pair

• two inter particle distances d_{μ} and d_{\parallel} and

• the enclosed bond angle ϕ are measured. Since none of the three particles is distinguished, each triple gives 6 contributions.

Distribution \mapsto **Correlation function.**

The correlations $g_3(d_1, d_1, \varphi)$ can be calculated from the sampled distribution $\rho_3(d_{\mu}, d_{\mu}, \varphi)$ by dividing by the uncorrelated distribution $\rho_{uncorr}(d_{\mu}, d_{\mu}, \varphi)$:

$$\rho(d_{\mu}, d_{\mu}, \varphi) = \frac{\rho(d_{\mu}, d_{\mu}, \varphi)}{\rho(d_{\mu}, d_{\mu}, \varphi)}$$

with the intra-shell Wigner-Seitz radius

$$r_{\rm WS}^{\rm shell} = \frac{2}{\sqrt{N^{\rm shell}}} R^{\rm sh}$$

• Similar angular order in flat an spherical system

• Peaks are separated more clearly in the flat system.

30° 60° 120° 90° angular pair distance $\vartheta_{\rm l}$

Fig. 4: Angular pair correlation function (PCF) on the outer shell: By full integration of ϑ_1 and φ_2 , the inter-shell angular PCF is extracted. This function $g(\varphi)$ corresponds to $g(r_{ij})$ in flat systems. Inset: The height of the 2nd neighbor peak saturates at the melting region.

150°

180°

Test: Extended 2D system

Bond angle distribution $\rho(\varphi)$.

Different averages of the TCF can be computed by integration of ρ_3 and $\rho_{3,uncorr}$ over one or more coordinates.

- d_{\downarrow} is integrated over nearest neighbors
- d_{\parallel} is integrated over second neighbors
- \Rightarrow bond angle distribution p(9)

Summary

(2)

(3)

It is shown that the three-particle correlation function is a powerful and sensitive tool for structural analysis in strongly correlated matter

- The *intra shell configuration* and the radial structure can be analyzed in detail by the TCF during dynamic processes, e.g. melting, excitation
- The TCF is not affected by a rotation of the entire cluster
- In contrast to other bond order parameters, no fixed reference direction is required
- The TCF is not restricted to discrete particles, also applicable to density function, e.g. discharge filaments [4]

Outlook

- Calculate and subtract two-particle contributions to obtain pure three-particle correlations
- Derivation of criteria for phase boundaries from the TCF

 $93(u_1, u_1, \psi) \rho_{\text{uncorr}}(d_{\mu}, d_{\mu}, \phi)$ Uncorrelated three particle density in a homogeneous 2D system with $\rho_0 = \frac{N}{V}$:

 $\rho_{3,\text{uncorr}}(d_{\mu},d_{\mu},\varphi) = N \cdot 4\pi \cdot \rho_0 \cdot d_{\mu} \cdot d_{\mu}$

Spherical 3D systems.

In spherical Coulomb clusters, we investigate the intra-shell order.

All possible pairs of three particles A, B and C within **one shell** are sampled. For each pair • two angular pair distances 9_{1} and $\boldsymbol{9}_{\parallel}$ and

• the enclosed bond angle ϕ are measured.

Fig. 2: TCF of 2D Yukawa ($\kappa = 1.0$) cluster: By integration of ϑ_1 and ϑ_{\parallel} , one pair of nearest neighbors and one pair of second neighbors are selected. The resulting bond angle distribution $p(\varphi)$ shows pronounced peaks at multiplies of 30°.

Inset: The height of the 30°-peak shows a step-like increase at the melting point.

• bond angle distribution of distant neighbors: similar behavior

• Promising candidate: height of the 30°-peak in bond angle distribution

References

[1] J. Böning et al., Phys. Rev. Lett. **100**, 113401 (2008) [2] H. Thomsen, Excitation and Melting of Yukawa Balls, diploma thesis, CAU Kiel (2011)

[3] M. Bonitz et al. (Eds.), Complex Plasmas: Scientific Challenges and Technological Opportunities, Springer (2014)

[4] R. Wild and L. Stollenwerk, *Eur. Phys. J. D* **66**, 214 (2012)

Contact: Hauke Thomsen • Institut für Theoretische Physik und Astrophysik • Christian-Albrechts-Universität Kiel • • Leibnizstrasse 15, 24098 Kiel, Germany • +49-431-880-4068 • thomsen@theo-physik.uni-kiel.de •