
Structure Formation in Strongly Correlated
Coulomb Systems

M. Bonitz1, V. Filinov2, A. Filinov1, V. Golubnychiy1, P. Ludwig1,3,
H. Baumgartner1, P.R. Levashov2, V.E. Fortov2, and H. Fehske4

1 Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität
zu Kiel, Leibnizstr. 15, 24098 Kiel

2 Institute for High Energy Density, Russian Academy of Sciences, Izhorskaya 13/19,
127412 Moscow, Russia

3 Institut für Physik, Universität Rostock, Universitätsplatz 3, 18051 Rostock
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Abstract. We present an overview on classical and quantum Coulomb (Wigner) crys-
tallization phenomena caused by strong correlation effects in one-component and two-
component plasmas.

1 Introduction

Coulomb systems (CS) built-up by charged particles are omnipresent in nature
[1,2] - from astrophysical plasmas (interior of planets or stars [3]) to laboratory
systems (gas discharges, fusion plasmas, trapped ions, plasmas in storage rings
or dusty plasmas to name a few examples [4]). Due to the strength and long
range of the Coulomb interaction it dominates the many-particle behavior in
these systems. Despite their different form of appearance, all CS exhibit simi-
lar fundamental properties governed by the strength of the Coulomb interaction
(measured by the coupling parameters Γ and rs) and the importance of quan-
tum effects (quantified by the degeneracy parameter χ). These parameters are
determined by the ratio of characteristic energy and length scales [5–7]:

• Length scales: (i) r̄ – average inter-particle distance, r̄ ∼ n−1/d (n and d =
1, 2, 3 denote the density and dimensionality of the system, respectively).
(ii) Λ – quantum-mechanical extension of the particles. For free particles
we have Λ = h/

√
2πmkBT (DeBroglie wavelength), for bound particles Λ is

given by the extension of the wave function. (iii) aB – relevant Bohr radius
aB = ε

eaeb

h̄2

mab
, where m−1

ab = m−1
a + m−1

b .
• Energy scales: (i) 〈K〉 – mean kinetic energy, which in a classical system

is given by 〈K〉cl = d
2kBT , whereas in a highly degenerate Fermi system

〈K〉qm = 3
5EF holds (EF denotes the Fermi energy); (ii) 〈Uc〉 – mean

Coulomb energy, given for free and bound particles by 〈Uc〉f = eaeb

4πε
1
r̄ and

〈Uc〉B = eaeb

4πε
1

2aB
≡ ER, respectively.

Then the degeneracy parameter χ ≡ nΛd ∼ (Λ/r̄)d divides many-body sys-
tems into classical (χ < 1) and quantum mechanical ones (χ ≥ 1).
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The Coulomb coupling parameter is the ratio |〈Uc〉|/〈K〉. For classical systems
Γ ≡ |〈Uc〉|/kBT results, whereas for quantum systems the role of Γ is taken over
by the Brueckner parameter rs ≡ r̄/aB ∼ |〈Uc〉|/EF .

This way the equilibrium state of a plasma containing a single charge com-
ponent can be characterized, but also two-component Coulomb systems can be
classified (see Sec. 5 below).
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Fig. 1. Universal density–temperature plane for one-component Coulomb systems in
thermodynamic equilibrium. The lines Γ = 1 and rs = 1 enclose the region of strong
Coulomb correlations, the lines Γ = 100 and rs = 100 give an approximate boundary
for Coulomb (Wigner) crystals. The line χ = 1 separates classical (left) and quantum
(right) systems. Abbreviations stand for CS in tokamaks (T), inertial confinement fu-
sion (ICF), brown dwarf stars (DWARFS), Jupiter interior (J), ionosphere (I), shock
wave plasmas (SH), ion beams (IBEAMS). The green box denotes the region of semi-
conductors (scaled with the excitonic aB , ER). Plasmas in traps (TR), typically realized
at sub-Kelvin temperatures, are outside the figure (taken from [7].)

Fig. 2. 19-electron quantum Wigner “crystal” (left), radially ordered crystal (center)
and mesoscopic fermionic liquid (right). From left to right quantum melting at constant
temperature occurs. Dots correspond to the probability density ρ of the electrons in
the 2d plane which varies between ρmax (pink) and zero (red) [8].
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Fig. 1 shows a qualitative phase diagram of one-component Coulomb systems
in equilibrium as a function of temperature and density. Different Coulomb sys-
tems can be mapped onto each other by rescaling lengths and energies in the
actual aB and ER (with the corresponding data for m, e, d, and ε). Applying
this rescaling to electron-hole plasmas in semiconductors one sees that it covers
a remarkably broad range of situations in laboratory and space plasmas.

The general behavior of CS is well known: In the limit of high temperature
χ ¿ 1 and Γ ¿ 1, the CS behaves as a classical ideal gas of free charge carriers.
Similarly, in the limit of very high densities, the degeneracy becomes large, i.e.
χ À 1, and the Fermi energy exceeds the interaction energy (rs ¿ 1), leading to
an ideal quantum gas of spatially extended and mutually penetrating particles.
Much more interesting behavior emerges when the Coulomb energy starts to
exceed the kinetic energy, i.e., Γ ≥ 1 or rs ≥ 1. Then the charged particles
become highly coordinated showing liquid-like correlations. Increasing Γ and rs

further to values of the order of 100, it is energetically favorable for the charged
particles to settle in a lattice arrangement. This process was originally predicted
to occur for electrons in metals by Wigner [9]. The possible existence of Wigner
crystals (we will use the term Coulomb crystal as a synonym) in different CS
will be in the focus of this overview.

The occurrence of strong Coulomb correlations is inhibited by many compet-
ing effects. The most important is bound state formation of atoms or molecules,
which are neutral and thus drastically reduce the coupling strength in the sys-
tem, (for a detailed analysis of Coulomb bound states see [1,2]). For this reason
the realization of Wigner crystals turned out to be very difficult. It was first
achieved with electrons on the surface of ultra-cold Helium droplets [10]. Here
bound state formation was suppressed by the use of a one-component system
being stabilized due to the image forces on the droplet surface. This idea was
further exploited in other one-component plasma systems (non-neutral plasmas),
in particular for ions [11,12] trapped in electrostatic confinement potentials (for
an overview and additional references see [4]). Below, we consider examples of
such non-neutral plasmas in two and three dimensions. We conclude by dis-
cussing Coulomb crystallization in two-component (neutral) plasmas.

2 Theoretical basis

The Hamiltonian of a one-component CS of identical particles with mass m and
charge e in a confinement potential V (r) is given by

Ĥ =
N∑

i=1


− h̄2

2m
∇2 + V (ri) +

e2

ε

N∑

1≤j<i

1
|ri − rj|


 . (1)

Throughout this paper the confinement will be assumed to be isotropic and
parabolic, i.e. V (r) = mω2r2/2. The last, pair interaction term in Eq. (1) is
repulsive, and the particle arrangement is stabilized by the external potential V
that drives the particles towards the center (r = 0). Depending on temperature
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and density (which is controlled by the trap frequency ω) the system (1) shows
a rich many-particle behavior, where in finite systems with N < 100 the prop-
erties strongly depend on the precise particle number. Nevertheless structural
transitions such as crystallization and melting occur being reminiscent of phase
transitions in real macroscopic systems. We will, therefore, use this terminology
here as well, always keeping in mind the peculiarities of a finite system.

In particular, melting in these mesoscopic systems can be understood, in anal-
ogy to macroscopic systems, as a process of abrupt loss of spatial correlations,
i.e. as an increase of relative inter-particle distance fluctuations u,

u ≡ 2
N(N − 1)

N∑

i6=j

√
〈r2

ij〉
〈rij〉2 − 1, (2)

where rij is the distance between particles i and j. The average is evaluated in
thermodynamic equilibrium either as a time average, e.g. in a kinetic or molec-
ular dynamics (MD) simulation, or as an ensemble average in a (classical or
quantum) Monte Carlo (MC) simulation (cf. Ref. [13]). These quantities are
readily computed in any dimension, for macroscopic and small ensembles and
for classical and quantum systems as well. Some representative examples will
be shown below (see Fig. 5). The distance fluctuations show a drastic increase
when the system goes over from localized to delocalized behavior and therefore
can be taken as a suitable criterion for a melting-like transition even in small
systems [14].

Let us emphasize that the theoretical analysis of Coulomb crystallization is
very difficult. Due to the strong correlations no rigorous analytical methods exist.
So one has to resort to computer simulations such as MD or MC. The problem is
even more difficult in quantum systems because additionally quantum diffraction
and spin effects occur. The results presented in figures 2, 4, 6, and 9 below have
been obtained from first principle path integral Monte Carlo (PIMC) simulations
where the most probable configuration in the canonical ensemble is computed
evaluating the density operator ρ̂ = Z−1e−Ĥ/kBT (for details see again Ref.
[13]). PIMC simulations have been dramatically improved over the last 10 years,
where an important impact are high-quality quantum pair potentials modelling
quantum effects at small distances. Such potentials were originally derived by
Kelbg and Ebeling [15,16] and continuously improved by Ebeling and co-workers
(for recent reviews see [17,18], PIMC simulations of macroscopic plasmas were
discussed in Refs. [19,20,13]).

3 Two-dimensional plasmas in traps

Let us first consider the motion of particles being confined to a plane of zero
thickness. Practically, finite thickness effects can always be taken into account
by using in Eq. (1) effective potentials (averaged over the particle wave functions
in the third dimension [13]).
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3.1 Crystallization in classical 2d plasmas

The classical ground state is obtained by neglecting the kinetic energy (T → 0),
i.e. by minimizing the total potential energy [second plus third terms in Eq. (1)].
Since Γ →∞ (the critical value for a macroscopic 2d plasma is 137) a Coulomb
(Wigner) crystal is formed which consists of several concentric shells. The shell
occupation numbers form a regular sequence like in the case of the Mendeleyev
table of atoms (see, e.g., Ref. [21] and references therein). Besides the shell
structure, these crystals form a triangular lattice (with hexagonal symmetry),
which is the ground state of a macroscopic 2d Coulomb system, see e.g. Fig. 2. As
the temperature increases, melting occurs in two steps. First a “delocalization” of
particles within their shells is observed which we denote as orientational melting
(OM). Here the radial order is still retained, see Fig. 3. Second, a substantial
radial overlap of the shells occurs leading to a cross-over to a fluid-like state.
This is process is called radial melting (RM). Remarkably, the stability of small
crystals against fluctuations and finally melting varies drastically with N due to
differences in the symmetry. Particular high stability against OM is observed for
so-called “magic” clusters with closed shells (e.g. N = 19), cf. the corresponding
phase boundaries of the clusters with N = 19 and the “non-magic” cluster
N = 20 in Fig. 4.
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Fig. 3. Probability distribution function for a classical Coulomb cluster with N = 19
for Γ = 300 (top left), Γ = 150 (top right), Γ = 100 (bottom left) and Γ = 10 (bottom
right). Orientational (radial) melting is observed from left to right in the top (bottom)
line. r0 is defined by e2/εbr0 = m∗ω2r2

0/2 (taken from Ref. [22]).
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3.2 Crystallization in quantum 2d plasmas

Of course the limit Γ → ∞ is not realized in nature because with vanishing
temperature or increasing density quantum effects become important. The de-
generacy parameter χ will unavoidably exceed unity, what means that the cou-
pling strength is no longer determined by Γ but by rs. As a consequence, an
increase of the density increase will lead to a decrease of the coupling (because
the Fermi energy increases faster than the Coulomb energy when the system
is compressed) and quantum melting of the Wigner crystal takes place, even at
zero temperature [14]. This is visualized in Fig. 2, where the crystal (left figure)
vanishes by compression in two steps. In contrast to the classical case, where
melting is mainly triggered by an increasing amplitude of the thermal fluctu-
ations of particles in their local potential wells, in the quantum case, melting
is due to an increasing overlap of the wave function (see the increasing size of
the dots in the center figure). As a result, the electrons become able to tunnel
between neighboring lattice sites, i.e. delocalization of the particles takes place.
Above a critical density of about rs = 50 (in a macroscopic quantum crystal
melting occurs for rs = 37 [23]) the crystal vanishes.

Fig. 4. Phase diagram of mesoscopic electron Wigner crystal for different particle num-
bers N . OM (RM) mark the boundaries of orientational (radial) melting. Here the di-
mensionless density n and temperature T are defined as n =

√
2 l20/r2

0 = (a∗B/r0)
1/2 ≈

r
−1/2
s and T = kBT/Ec, respectively, where l20 = h̄/(m∗ω0), Ec = e2/εbr0 with r0 are

given by e2/εbr0 = m∗ω2r2
0/2 (taken from Ref. [14]).

This means, density increase, at low but finite temperature, leads to a se-
quence of four phase transitions (see Fig. 4): (i) A transition from a classical
liquid to a classical radially only ordered (RO) crystal (e.g. for N = 19, this
happens at Γ = 330), then (ii) to a fully ordered crystal (Γ = 154, see also
Fig. 3) which (iii) transforms by quantum melting into a RO crystal at rs = 400
and, finally, (iv) to a (fermionic) liquid-like state at rs = 64. As a consequence
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of the symmetry effects mentioned above, the “crystalline” phase is strongly
particle-number dependent (cf. the different lines in Fig. 4). We would like to
stress that spin effects are of minor importance with regard to the boundary of
the crystalline state, but are of relevance in the liquid and gas state.

3.3 Crystals in electron bilayers

The above analysis of crystallization in two dimensions is straightforwardly ex-
tended to systems of two ore more coupled layers – from bilayers to superlattices
being situated in between 2d and 3d systems. The obvious generalization of the
Hamiltonian (1) consists in the replacement Ĥ → ∑

a Ĥa +
∑

a 6=b V̂ a,b
ij , where

a, b label the layers. Here, as a new ingredient, the interaction V̂ a,b
ij between

particles in different layers appears, which strongly affects the crystal structure
and melting behavior [24].

Fig. 5. Crystallization phenomena in a classical bilayer system of 2 × 19 particles
with different interlayer distance d. Left three figures: Relative two-particle distance
fluctuations ulm for particles from the same layer (open symbols) and from different
layers (full symbols), as well as radial fluctuations ul (cf. Ref. [25]). Upper right panels:
Snapshots of the crystal structure in the ground state. Here full and open symbols
denote particles from different layers, thin lines are guides for the eye in order to
underline the cluster symmetry. Lower right figure: Critical temperature of the radial
(RM) and orientational (OM) melting transitions versus d [25].
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Interestingly the strength of the inter-layer correlations, arising from V̂ a,b
ij ,

can be controlled by varying the layer separation d (which acts as a new length
scale of the system, in addition to the parameters discussed in the Introduction).
This can be seen from Fig. 5.c, where, for large distances (e.g. d/aB = 1.4),
the symmetry in each layer is the same as in a single-layer system with 19
particles (cf. Fig. 2). With decreasing d the hexagonal symmetry is lost in favor
of square and rhombic symmetries until, at small layer separations, the hexagonal
symmetry is restored – but now the arrangement is the same as in a single layer
containing 38 electrons. We note the non-monotonic change of the orientational
and radial melting temperature with d (see Fig. 5.d [24]). Around d/aB = 0.9
the barrier for inter-shell rotations vanishes (i.e., the two shells in each layer
rotate freely) which can be traced back to the emerging 3d behavior at this
distance: The particles in the two layers are coupled as equally strong as inside
each layer, which can also be seen in the identical intra-layer and inter-layer
distance fluctuations depicted in Fig. 5.b.

3.4 Excitonic crystal in electron-hole bilayers

Even more interesting is the case of two layers containing negative (electrons)
and positive (holes) charges, respectively. Compared to the uniformly charged
bilayer system new physical phenomena are observed when the distance d be-
tween the layers is reduced: The system goes over from two decoupled Coulomb
layers to an effective single layer of particle pairs with dipole-dipole interaction
instead of the Coulomb repulsion. At the same time, two fermions (an electron

Fig. 6. Phase diagram of a symmetric (me = mh) mesoscopic electron-hole bilayer
crystal for Ne = Nh = 16 at fixed values of temperature (left panel). The grey line
gives the boundary between plasma and excitons. Right Fig. shows the phase boundary
of the crystal for fixed values of d. Results are taken from Ref. [27].

and a hole) form a bound state (exciton) which, to some extend, behaves as
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a (composite) boson. These electron-hole bilayers also support crystallization
[26,27]. In addition to the Coulomb crystals considered above (i.e., crystals of
electrons and holes, respectively, in each layer at large d), one observes, at small
d, crystallization of excitons. The phase diagram of this model is shown in Fig. 6.
Obviously, the interlayer attraction stabilizes the crystal: The critical value of
rs is reduced to about 20 from the single layer limit of about 50 (see Fig. 4). No
crystal is observed if d becomes smaller than 5aB , due to the large extension of
the wave function in the layers [28].

Another problem of current interest regards the fluid excitonic phase. Here,
our PIMC simulations give evidence that in these systems Bose condensation
of excitons should be possible (note that due to their parallel orientation these
“indirect” excitons repel each other and cannot form bi-excitons). From the
behavior of the exchange permutation cycles [30], we find a finite Bose condensate
fraction [29]. Further, a significant reduction of the moment of inertia is found
which might indicate [30] a finite superfluid fraction of excitons [29].

4 Three-dimensional plasmas in traps

Coulomb crystallization in a spherical three-dimensional geometry was first ob-
served for ultra-cold ions in Penning or Paul traps [11,12]. A second candidate are
ions created by ionization of cooled trapped atoms. Recent simulations [31] show
that the expanding ions might crystallize if they are properly laser cooled during
the expansion. Finally, so-called “Coulomb balls” have been observed in dusty
plasmas [32]. Their theoretical description is again based on a tree-dimensional
version of the Hamiltonian (1) (for an overview on earlier theoretical results
and simulations see [4]). In this case, for an adequate modeling of the plasma
properties, the screening of the interaction has to be accounted for. The simplest
approximation is to use an isotropic Debye/Yukawa potential V (r) = e2 e−κr

r in-
stead of the Coulomb potential. Such an interaction, together with an isotropic
harmonic confinement is, in fact, capable to describe the dusty plasma measure-
ments [35]: Three-dimensional concentric shells, see Fig. 7, with shell populations
Ns being sensitive to the screening strength κ. The Ns cannot be explained by
using a pure Coulomb interaction. As in the 2d case closed shell configurations
and a “Mendeleyev table” exist (see, e.g., Ref. [33–35]). The dependence of the
crystal stability on the number of particles can be seen from their melting tem-
peratures. For example, the closure of the first spherical shell occurs st N = 12,
which gives rise to a particularly high crystal stability (high melting temper-
ature), cf. Fig. 7.b. Nevertheless, many aspects of three-dimensional Coulomb
crystals are still unsettled. In particular, it remains to explore the properties of
3d quantum crystals.
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Fig. 7. Three–dimensional Coulomb crystal (“Coulomb ball”). Upper left figure shows
the shell arrangement for N = 190, different colors denote particles on different shells
(lines are a guide to the eye), lower right figure the number of particles Ns on the
shells for different N and different values of κ. Upper right Fig. contains the melting
temperature versus particle number. Table contains experimental (last line) and theo-
retical shell configurations of the Coulomb ball N = 190. N1 . . . N4 denote the particle
numbers on the i-th shell beginning in the center. κ is given in units of r−1

0 defined by
mω2r2

0 = e2/r0, temperature is in units of E0 = e2/r0. From Refs. [35,36].

5 Coulomb crystals in macroscopic two-component
plasmas

As mentioned in the Introduction, crystallization in two-component (neutral)
plasmas is strongly inhibited by formation of neutral bound states. Crystal for-
mation is nevertheless possible. One way is the formation of a crystal of neutral
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particles. Due to the reduced interaction energy, however, a strongly reduced
temperature is required. An example is hydrogen, where the ground state at
low pressure is a molecular solid [37] and metallization is observed around 1
Mbar [38]. A similar scenario was demonstrated above in Sec. 3.4 for the case of
indirect excitons which also form a crystal of neutral particles.

A second possibility is the formation of a Coulomb crystal of the heavy
charge component alone. Examples are conventional metals, and similar behav-
ior is predicted for White Dwarf stars [3] and the crust of neutron stars. In
fact, also the dusty plasmas mentioned above form a Coulomb crystal in the
presence of a neutralizing background. To understand the mechanisms, let us
consider the characteristic parameters of a two-component plasma which gen-
eralize those of the one-component plasma discussed in the Introduction. In
thermodynamic equilibrium, the “asymmetry” of the plasma is characterized
by the charge and mass ratios of the heavy (“h”) and light (“e”) components,
Z = qh/qe, M = mh/me and, under stationary non-equilibrium conditions, by
the temperature ratio Θ = Te/Ti. In addition, now there exist coupling and
degeneracy parameters for each component, Γe,Γh, rse, rsh, χe and χh.

The just mentioned Coulomb crystals of heavy particles occur in a strongly
asymmetric neutral plasma with Z À 1 or/and M À 1 or/and Θ À 1. Since
Γh/Γe = Z2Θ, it is possible to realize situations where simultaneously strong
coupling of the heavy particles but weak coupling of the light particles takes is
observed. Also, there is a broad parameter range where the heavy particles are
classical and the light particles are degenerate because χe/χh = Z(M/Θ)3/2. The
conditions required for such a Coulomb (Wigner) crystal of heavy particles to
exist in the presence of light ones (electrons) are simply that no bound states can
form: Either the temperature should exceed the binding energy, or the density
should be larger than the Mott density. The latter condition roughly corresponds
to the situation that two neighboring electrons come closer than the size of an
atom, rse < 1.2, i.e., bound electrons can tunnel from one atom to another –
a situation described in the left panel of Fig. 8. This has to be combined with
the requirement of strong coupling coupling of the heavy particles, Γh > 175,
or rsh > 100 (in 3d). Physically this means that a crystal of heavy particles
coexists within a fully delocalized gas of light ones. Both conditions can be
fulfilled simultaneously for a sufficiently large charge ratio Z (as in a classical
dusty plasma) or a (large) mass ratio M > Mcr ≈ 83 [39,40], which allows us to
predict other candidates of Coulomb crystals including crystals of protons [41],
α–particles, and holes in semiconductors [39,42,43].

The numerical verification of this prediction is a challenging task which was
addressed by PIMC simulations. Selected results are shown in Fig. 9. There
one clearly sees continuously increased hole localization when the mass ratio is
increased from M = 12 to 400. A hole crystal emerges between M = 50 and
M = 100, in good agreement with analytical predictions [39,42]. Experimental
verification of proton or α−particle crystals seems feasible in laser or ion beam
compression experiments. Also, the observation of hole crystals in semiconduc-
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tors appears to be possible. Materials with sufficiently flat valence bands have
already been investigated [45].

Fig. 8. Phase diagram of a Coulomb crystal of heavy particles in a macroscopic two-
component (neutral) plasma. Left figure yields a qualitative picture on a larger scale.
Te = 3

2
kBT/ER and rse = r̄e/aB . Taken from Refs. [39,42].

Fig. 9. Snapshots of a Coulomb crystal of heavy particles (red clouds) embedded into
a Fermi gas of electrons (yellow) in a macroscopic two-component (neutral) plasma
for mass ratio M = 12 (top left), M = 50 (top right), M = 100 (bottom left) ,
M = 400 (bottom right) [44]. The density corresponds to rse = 0.64, the temperature
is Te = Th = 0.06ER.
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6 Conclusion

We have studied structure formation in charged particle systems by unbiased nu-
merical methods. Collective crystal-like particle arrangements have been proven
to occur in finite (closed) systems. Coulomb crystals represent the energetically
favorable (i.e., stable) state of the plasma in a certain density interval and at
sufficiently low temperature, whereby the Coulomb coupling has to be about two
orders of magnitude larger than the kinetic energy. In this report we have only
considered the equilibrium properties of these finite Coulomb systems. Future
research should address, e.g., the eigenmode spectrum of such clusters being di-
rectly related to their transport properties. In any case, it remains an open task,
to develop a rigorous analytical theory for strongly correlated Coulomb systems
in both equilibrium and non-equilibrium stituations. Further, we have discussed
Coulomb crystals in macroscopic two-component neutral plasmas. The condi-
tions for their existence are essentially a sufficiently large charge and/or mass
asymmetry between the components.
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