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Abstract
Using an adiabatic approximation, we derive an effective interaction potential
for spatially indirect excitons in quantum well structures. Using this potential
and path integral Monte Carlo simulations, we study exciton crystallization and
the quantum melting phase transition in a macroscopic system of 2D excitons.
Furthermore, the superfluid fraction is calculated as a function of density and
is shown to vanish upon crystallization.

PACS numbers: 67.10.Ba, 67.25.dj, 64.70.kg, 67.80.−s, 68.65.Fg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent decades, systems of indirect excitons have been extensively studied experimentally
[1] due to the prospects to achieve superfluidity and Bose condensation. Promising set-ups
which have been successful in controlling the many-exciton state are electron–hole bilayers,
e.g. [2, 3], or single quantum wells (QWs) using the quantum Stark confinement (QSC). The
latter will be studied in the present work. As was shown in [4], through the QSC one can
simultaneously produce spatially indirect excitons and achieve their spatial localization. By
varying the applied electric field, one can control the exciton coupling parameter—the ratio
of the mutual exciton–exciton interaction to the confinement energy, as shown in our previous
simulations for GaAs and ZnSe structures [4]. With the increase of inter-exciton coupling, a
striking phenomenon is expected—spatial ordering of excitons into a crystalline lattice. This
quantum phase transition has been recently studied by a path integral Monte Carlo (PIMC)
method for trapped finite Coulomb systems [5], systems of particles with dipole interaction
[6] and symmetric electron–hole bilayers [2, 3, 7, 8]. Analytical results for the crystal phase
have also been reported [9].

In the case of interacting Bose particles, in addition, (partial) superfluidity is expected.
Then during the crystallization transition, one expects a gradual decrease of the superfluid
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fraction. This behaviour has recently been studied in detail by PIMC simulations for Bose
particles with the Coulomb interaction [10]. It was shown that the superfluid density can
be concentrated either in the core or at the cluster boundary depending on the hexagonal
order in the clusters which sensitively depends on the particle number. Furthermore, a two-
dimensional homogeneous dipole system of up to 400 particles has recently been studied
[11, 12]. The crystallization point has been identified in ground state calculations (DMC) by
comparing the energies of the solid and gas phases [11], and by a break of the translational
symmetry of the pair distribution functions (PDFs) and abrupt vanishing of the superfluid
fraction at this point [12]. The authors found a transition point at a density of nr2

0 = 290 ± 30
or D = √

nr0 = 17 ± 1 (with r0 being the characteristic distance defined by the relevant
energy scales, h̄2

/
mr2

0 = e2d2
/

4πεr3
0 ). In the present paper, we test the validity of the

dipole model for indirect excitons. In fact, the effective exciton–exciton interaction Vxx is
a quantum-mechanical four-body problem which has been studied, e.g., by Zimmermann
and Schindler [13] and may significantly deviate from the simple dipole form at distances
comparable with the exciton dipole length. We, therefore, devote special care to compute
Vxx from first-principle PIMC simulations. We find that this interaction allows for a second-
phase transition—quantum melting of the exciton crystal by compression—missing in dipole
systems. Further, we found that for an effective exciton dipole length below d � 6a∗

B, the
crystalline phase vanishes.

Below we present results for a model similar to the experimental set-up of the Timofeev
group [14]: a single ZnSe-based QW with indirect excitons produced by an electric field [4]
applied normal to a QW plane. In order to be able to perform simulations for a macroscopic
ensemble of indirect excitons, we apply a bosonic model. As shown by various groups [15, 16],
in the moderate density regime, the excitons are adequately treated as a composite particle
obeying Bose statistics due to strong attractive interaction between the electrons and holes.
In the simulations of [16], we were able to test this approximation against the exact two-
component fermion system in a broad range of densities. In particular, we found that the
bosonic model gives accurate predictions for the superfluid fraction once the excitons are in
a strongly coupled–low/moderate-density regime. In contrast, in the weakly coupled–high-
density regime close to or beyond the Mott density, the results are strongly affected by the
Fermi statistics and the bosonic approximation breaks down. Thus, in the present analysis of
moderate-density systems the bosonic model works well allowing us to study relatively large
exciton ensembles without being hampered by the fermion sign problem.

2. Model

The general Hamiltonian for a system of Ne electrons and Nh holes (N = Ne + Nh) in the
quantum well confinement and electric field can be written as

Ĥ 3D = Ĥ
single
‖ + Ĥ single

z + W, (1)

with the single particle and interaction parts being defined as

Ĥ
single
‖ =

N∑
i=1

[
− h̄2

2m
‖
e(h)

∇2
ri

]
,

Ĥ single
z =

N∑
i=1

[
− h̄2

2m⊥
e(h)

∇2
zi

+ V
QW

e(h) (zi) + V F
e(h){Ez(ri , zi)}

]
, (2)

W =
N∑

i<j

V Coul
ij , V Coul

ij = eiej

ε
[(ri − rj )

2 + (zi − zj )
2]−1/2.
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We consider a homogeneous electric field Ez(ri , zi) = Ez(zi), where vectors r denote 2D
vectors in the QW plane, V QW is the QW confinement, V F is the electrostatic potential energy
due to the electric field and ε is the background dielectric constant.

To apply the approximation of bosonic excitons valid for low-to-moderate densities [16],
we want to reduce the 3D Hamiltonian (1) to a 2D one, where all effects related to a particular
width of the QW and the electric field strength will be combined in an effective inter-exciton
interaction Vxx(R). This becomes possible by using the adiabatic approximation [17, 18]. This
approach is justified for high values of the electric field Ez which leads to a strong localization
of electrons and holes at opposite edges of the QW. To be specific, the calculations below
correspond to L = 30, . . . , 120 nm wide ZnSe QWs and Ez = 20 kV. Assuming the relation
of energy scales, �ε

single
i � U int

eh(ee,hh), where �ε
single
i is the characteristic spacing of the

quantized one-particle energy levels in the z-direction and U int is the interaction energy, we
separate the out-of-plane motion and solve the 3D Bloch equation for the N-particle density
matrix ρ3D:

−∂ρ̂3D(β)

∂β
= Ĥ 3Dρ̂3D(β) (3)

in the adiabatic approximation, i.e.

ρ3D(β) = ρ2D(r1, . . . , rN, β)

Ne∏
i=1

ρe(zi, β)

Nh∏
j=1

ρh(zj , β), (4)

where β = 1/kBT (below, we drop the argument β). Now integrating out in equation (3) all
z-dependences, i.e. applying

∫ ∏Ne
i=1 dzi

∏Nh
j=1 dzj , we obtain a reduced 2D Bloch equation:

− ∂ρ2D

∂β
=

⎛
⎝ N∑

i=1

− h̄2

2m
‖
e(h)

∇2
ri

+
N∑

i<j

Ṽαiβj
(rij ) +

N∑
i=1

ε
single
i

⎞
⎠ ρ2D, (5)

where we introduced a smoothened Coulomb potential:

Ṽαiβj
(rij ) =

∫
V Coul

ij ραi
(zi)ρβj

(zj ) dzi dzj , α, β = e, h. (6)

The densities ρe(ze) and ρh(zh) are found by solving a single-exciton problem in an electric
field [17]. Also the exciton dipole moment, μ = e · d, follows directly from the electron and
hole densities:

d = 〈ze〉 − 〈zh〉 =
∫

zeρe(ze) dze −
∫

zhρh(zh) dzh. (7)

The low-to-moderate density regime considered here also leads to another relation of energy
scales, i.e. EB(X) � Vxx, kBT , where EB is the exciton binding energy. Under these
conditions, the excitons remain in their internal quantum states described by a two-body
density matrix ρex(reh) throughout their interaction. This pair density matrix depends on the
electron–hole separation reh = re − rh and can be obtained numerically, e.g. with the matrix-
squaring technique [19] applied to the interaction potential (6). Again using the adiabatic
approximation (now in the 2D plane), we write ρ2D as a product of a density matrix of an Nx

particle complex and relative density matrices ρex of Nx excitons:

ρ2D = ρ2D(R1, . . . , RNx )

Nx∏
a=1

ρex
(
ra

eh

)
. (8)

Here we have assumed electrical neutrality, Ne = Nh = Nx , and introduced the electron–hole
pair coordinates related to the same exciton, (r1, . . . , rN) = {(

ra
e , ra

h

) = (
Ra, ra

eh

)}∣∣
a=1,...,Nx

,

3
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with the centre-of-mass (c.o.m.) coordinates Ra = (
m

‖
era

e + m
‖
hra

h

)/
Mx,Mx = m

‖
e + m

‖
h.

Certainly, the ansatz (8) implies that the excitons are stable against external perturbations and
we are below the Mott density.

Now averaging equation (5) over the relative degrees of freedom of excitons, i.e.
integrating over

∫ ∏Nx

a=1 dra
eh, we obtain the Nx-exciton Bloch equation depending on the

c.o.m. coordinates:

−∂ρ2D(R1, . . . , RNx )

∂β
= (Ĥ eff + Ex)ρ2D(R1, . . . , RNx ), (9)

Ĥ eff =
Nx∑
a=1

− h̄2

2Mx

∇2
Ra +

Nx∑
a<b

Vxx(R
ab), (10)

Ex =
Nx∑
a=1

〈
− h̄2

2μx

∇2
ra

eh
+ Ṽeh

(
ra

eh

)〉
ρex

+
N∑

i=1

ε
single
i . (11)

The interaction term in the effective exciton Hamiltonian Ĥ eff is defined as the sum of the
effective (adiabatically averaged) interactions of two electrons and two holes in excitons a and
b (a 
= b):

Vxx(R
ab) =

∫ ∑
α,β=e,h

Ṽαβ

(∣∣ra
α − rb

β

∣∣)ρex
(
ra

eh

)
ρex

(
rb

eh

)
dra

eh drb
eh. (12)

The distances of two particles from different excitons can be expressed as

ra
h − rb

h = Ra − Rb + me
(
ra

eh − rb
eh

)/
Mx,

ra
e − rb

e = Ra − Rb − mh
(
ra

eh − rb
eh

)/
Mx, (13)

ra
h − rb

e = Ra − Rb +
(
mera

eh + mhrb
eh

)/
Mx.

After integration, in equation (12), only the c.o.m. dependence on Rab = |Ra − Rb| remains.
Thus, we have derived the effective Hamiltonian (10) of composite particles. The

interaction potential (12) generalizes the dipole potential used in the previous analysis of
spatially indirect excitons [6, 11, 12]. The comparison of both is discussed below. The
corresponding N-body problem (10) can be solved with the path integral Monte Carlo technique
which allows for a direct treatment of many-body correlation and bosonic exchange effects;
for details, see [20–22].

3. Results

We have performed PIMC simulations for a 2D homogeneous system with N = 60 and
90 bosonic excitons in a simulation box with periodic boundary conditions. The potential
(12) has been divided into a short- and long-range part, Vxx = (Vxx − VD) + VD, with the
dipole interaction, VD = (ed)2/εr3, treated by the usual Ewald summation technique. We
used the following system of units: r → r/a∗

B, E → E/Ha∗, with the electron Bohr radius,
a∗

B = h̄2ε/m
‖
ee

2, and the electron Hartree, Ha∗ = e2/εa∗
B. Here, Mx = m

‖
e + m

‖
h is the

exciton mass. Parameters for typical semiconductor structures are listed in table 1. As it
follows from the derivation in adiabatic approximation, the Hamiltonian (10) contains only
the in-plane particles masses, m

‖
e(h). The anisotropy of the parabolic bands for both electrons

and holes, i.e. the out-of-plane effective masses, m⊥
e(h), are involved in the exciton solution in

the z-direction. These masses determine the shape of the density matrices ρe(ze), ρh(zh) and

4



J. Phys. A: Math. Theor. 42 (2009) 214016 A Filinov et al

Table 1. Semiconductor QW parameters. Masses are in units of the free electron mass m0.
We consider an anisotropic hole mass in GaAs according to [24] which provides better agreement
between theory and experiment for the exciton binding energy (see e.g. [18] and references therein).

GaAs/AlGaAs ZnSe/ZnSSe

ε 12.58 8.7
m‖

e 0.0667 0.15

m
‖
h 0.112 0.37

m⊥
h 0.377 0.86

Mx/m‖
e 2.68 3.46

a∗
B (nm) 9.98 3.07

Ha∗ (meV) 11.47 53.93

hence indirectly influence the effective inter-exciton interaction via equation (6). In particular,
for a 20 kV cm−1 electric field applied to a 30 nm wide QW the calculations of [4, 17] predict
that the e–h separation (7) equals d = 15.78 nm for GaAs and d = 20.41 nm for ZnSe
structures. Now comparing the ratio d̃ = d/a∗

B for both structures, we find d̃ = 1.58 and
d̃ = 6.65, respectively. This shows that in a ZnSe QW, the excitons are more strongly coupled
and it is easy to reach a crystalline regime as discussed below. Other advantages of using
materials with larger effective masses are (a) increased stability of excitons due to higher
binding energies and (b) increased exciton lifetime due to a better separation of carriers in the
z-direction (the radiative lifetime depends on the overlap of the density matrices ρe(h)(ze(h))).

In the following we, therefore, concentrate on the ZnSe structure. However, the results
presented in the dimensionless units, r/a∗

B and E/Ha∗, using table 1 can be applied to other
materials as well. In particular, the effective potential Vxx (12) already reduces to a dipole
interaction VD = (ed)2/εr3 at distances of about several exciton dipole moments d. In this
case, the Hamiltonian (10) can be brought to a universal dimensionless form using the scale
[12]: a0 = 1/

√
n,E0 = h̄2

/
Mxa

2
0 . Both systems of units are connected via relations

n = 1

a2
0

= 1

πr̄2
, a0 = √

πrsa
∗
B, rs = r̄/a∗

B,

D = e2d2

εa3
0E0

=
(

Mx

m
‖
e

)
d̃2 1√

πrs

, d̃ = d/a∗
B, (14)

E0

Ha∗ =
(

m
‖
e

Mx

)
1

πr2
s

,

where n = N/(LxLy) is the number density.
In figure 1, we show Vxx(r)[Ha∗] for several e–h separations, d̃ = d0, 2d0, 3d0, 4d0 with

d0 = 6.64848 (d̃ = d0 corresponds to a 30 nm ZnSe QW and field strength 20 kV cm−1).
In the right part we show, in addition, the dipole potential VD and the classical exciton pair
potential (limit of d̃ � r), Vex = 2/r − 2/

√
r2 + d̃2. While at large distances Vxx agrees with

VD, for r � 4d̃, Vxx is substantially weaker. Further, as one might expect from the dipole
model, overall the interaction is stronger with increasing d. However, at small distances,
r < 6a∗

B, Vxx shows the opposite behaviour which originates from the smoothening procedure
(12) over the exciton relative density matrices: with an increase of d̃ , e–h pairs become more
weakly bound and the exciton in-plane size increases. This delocalization reduces the strength
of the Coulomb interaction between two electrons and two holes, i.e. between two excitons.

5
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Figure 1. Left: exciton interaction potential Vxx(r)[Ha∗] (equation (12)) for several dipole
moments d̃ . Right: Vxx/d̃

2 compared with the dipole potential, VD(r) = 1/r3, and classical
exciton potential, Vex = (2/r − 2/

√
r2 + d̃2)/d̃2 (shown for d̃ = d0).

Conversely, the stronger the binding of an e–h pair and its spatial localization, the faster Vxx

approaches Vex.
Let us now analyse the melting behaviour of the exciton ensemble. In [11, 12], the

crystallization of dipoles was observed at D = 17 ± 1. We now perform a similar analysis
with the improved model interaction Vxx(r), for T = 1/3000 Ha and consider a density range
of ρa∗2

B = 1
/
πr2

s , rs = 5, . . . , 12. Simulations were performed for d̃[d0] = 1, 2, 3, 4, and
the results are shown in figures 2 and 3. At low densities where our potential is close to
a dipole potential, we observe similar results as in [11, 12], i.e. crystallization of dipoles
upon compression (not shown). But most importantly, at high density, we observe completely
different behaviour which is due to the weak potential at small r: the exciton crystal melts
upon compression. This transition is clearly seen from the 2D PDF in figure 2 (left) where
an abrupt loss of a (quasi) long-range crystalline order is observed by a slight change in rs

from 10 (top) to 9.5 (bottom). Simultaneously, in figure 2 (right) we observe a topological
change in the picture of the particle trajectories in the path integral representation [20]. While
in the solid phase we observe only local exchanges of few particles, just after the melting
transition the trajectories form macroscopically large permutation cycles crossing the edges
of our periodic simulation cell. From the statistics of the flux of paths winding around the
periodic cell, one can estimate the fraction of the superfluid density [20, 23]:

γs = ρs/ρ = Mx〈W 2〉/h̄2βNx, W =
Nx∑
i=1

∫ β

0
dt [dri (t)/dt] . (15)

Figure 3 indicates a step-like increase of the superfluid density from zero up to about 35% in
the gas phase. The vertical dotted line shows the Mott density where the excitons pressure
ionize and the bosonic model fails. The critical values rex

s for the exciton quantum melting
transition at different d̃ are collected in table 2 together with the critical data rd

s for the dipole
crystallization.

In conclusion, the derived exciton–exciton potential leads to completely different
predictions for the phase diagram of bosonic excitons compared to the dipole model. Due
to the much softer Coulomb-like interaction at small distances, the exciton solid melts by
compression, similar to a Wigner crystal of electrons [5]. Due to this fact, it becomes possible

6
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Figure 2. Left: 2D pair distribution function at rs = 10.0 (top) in the solid and rs = 9.5 (bottom)
in the superfluid gas phase. Right: snapshots from PIMC simulations. The trajectories of particles
involved in permutations of different lengths are denoted with different colours. d̃ = 3d0.

Table 2. Interparticle distances at first rd
s and second rex

s phase transitions: superfluid gas–exciton
solid. rd

s are estimated from (14) and D � 17 ± 1; rex
s are the PIMC results using Vxx(r) in

figure 1. The exciton solid exists for densities na∗2
B = 1/πr2

s , with rex
s � rs � rd

s . The second
column, L, is the required ZnSe QW width at the field strength Ez = 20 kV cm−1.

d̃(d0) L (nm) rd
s rex

s

1 30 5.1 (0.3) –
2 ∼50 20.4 (1.2) 10.0 (0.5)
3 ∼70 45.90 (2.7) 10.0 (0.5)
4 ∼90 81.6 (4.8) 11.0 (0.5)

to stabilize the exciton lattice only in a finite density interval (see table 2). Outside of this
region, the excitons exist in a superfluid gas phase.

Several heterostructures are candidates for the observed effect, but ZnSe is favourable
due to its relatively high value of the dipole moment. Using parameters from table 1 we
estimate the exciton solid to exist in ZnSe (taking d̃ = 2d0) in a QW with L ∼ 50 nm
between 0.81 � ρ(1010 cm−2) � 3.38 and T � 2 K and in GaAs in a QW with L ∼ 148 nm
between 0.77 � ρ(109 cm−2) � 3.2 and T � 0.4 K. While we have not considered disorder
effects due to the imperfections of the QW planes, they can be important. In our case of the
electric-field-induced indirect excitons, electrons and holes are pushed to the QW edges and
hence experience the influence of QW width fluctuations and impurities [18]. This, on one
hand, stabilizes the excitons [25]. On the other hand, as in the case of the electron Wigner
crystal, this can additionally stabilize the exciton solid at high densities.
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Figure 3. Superfluid fraction versus density na∗2
B , for N = 60 (circles) and N = 90 (diamonds)

for d̃ = 3d0. The dotted line shows the Lindemann parameter ur . The vertical line indicates the
Mott density. The Bose model (superfluid data) is applicable only at lower densities [16].
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