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Abstract
A combined theoretical and experimental analysis of the normal modes of
three-dimensional spherically confined Yukawa clusters is presented. Particular
attention is paid to the breathing mode and the existence of multiple monopole
oscillations in Yukawa systems. Finally, the influence of dissipation on the
mode spectrum is investigated.

PACS numbers: 52.27.Lw, 52.27.Gr

1. Introduction

Spherically confined dust crystals have recently attracted a large amount of attention, see,
e.g., [1, 2] for an overview. After the exploration of the ground-state structure [3–7]
and of metastable states and their probability [8–10] a question of particular interest is
the dynamical excitation spectrum. The normal modes are a key property describing the
response of a finite system to external excitation and also the melting behavior, e.g., [11–14].
Particularly interesting is the situation in dusty plasmas where the normal mode spectrum
of two-dimensional crystals could be analyzed experimentally, e.g., [15, 16]. Here, we
extend this analysis to three-dimensional spherical Yukawa crystals (Yukawa balls) and present
experimental results. From the theory side, we recall the determination of the normal modes of
confined systems, which for Yukawa balls were analyzed in [6]. Here, we concentrate on one
of the key modes—the breathing mode (BM) describing a uniform expansion and contraction
of the whole system. Recently, it has been shown [17] that a ‘true’ (i.e., uniform) BM does
not exist generally in Yukawa systems. Instead, there may exist several similar modes which,
however, all deviate either from uniform or radial motion of the particles. The brief derivation
of [17] is reproduced here in a more detailed way. One of the important consequences—
the possible existence of multiple monopole modes—is demonstrated. Finally, we take into
account the effect of dissipation on the normal mode spectrum which is crucial for dusty
plasmas.
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2. Normal modes of finite clusters

The crystals are characterized by a three-dimensional, classical system of N identical particles
harmonically confined by the potential φ(r) = mω2

0r
2
/

2 and interacting with a Yukawa-type
pair interaction v(r) = q2 exp(−κr)/r . The Hamiltonian is then given by (

∑′ indicates no
summation over equal indices)

H =
N∑

i=1

p2
i

2m
+

N∑
i=1

φ(|ri |) +
1

2

N∑
i,j=1

′
v(|rij |)

︸ ︷︷ ︸
U(r∈R

3N )

. (1)

To investigate the spectral properties of dusty plasma crystals at low temperatures we consider
small excitations from a ground-state or metastable state r∗ = (r∗

1, r∗
2, . . . , r∗

N) ∈ R
3N , which

is a minimum of the potential energy and thus fulfils the equations

0 = ∇iU(r)|r=r∗ = φ′(|r∗
i |)

|r∗
i |

r∗
i +

N∑
l=1

′ v′(|r∗
il|)

|r∗
il|

r∗
il ∀ i � N. (2)

The small excitation is a time-dependent function r(t) in the configuration space with
|r(t) − r∗| � 1. Due to the small amplitude of the oscillation the potential can be
approximated harmonically by

U(r) ≈ U(r∗) + 1
2 (r − r∗)T Hr∗

(r − r∗), (3)

where we used equations (2) and the definition of the Hessian matrix Hr∗ = ∇∇T U(r)|r=r∗ .
Because Hr∗

is a real symmetric 3N × 3N -matrix and positive semidefinite as well, its
eigenvalue problem [17]

λmr = Hr∗
r (4)

defines 3N eigenvalues λj � 0 and 3N linearly independent eigenvectors rj , which form a
basis in the configuration space and may be conveniently chosen orthonormal. Within this
basis the excitation can be expanded as

r(t) = r∗ +
3N∑
j=1

cj (t)rj , (5)

so that the time dependence is fully determined by the coefficients cj (t)—the normal
coordinates. These normal coordinates obey equations of motion, which follow from the
Hamiltonian (1)

0
(1)= mr̈ + ∇U(r)

(3)= mr̈ + Hr∗
(r − r∗)

(5)= m

3N∑
j=1

c̈j (t)rj +
3N∑
j=1

cj (t)Hr∗
rj

(4)= m

3N∑
j=1

[c̈j (t) + λjcj (t)]rj . (6)

Because the eigenvectors rj are linearly independent each normal coordinate cj (t) fulfils
0 = c̈j (t) + λjcj (t) with the solution

cj (t) = Aj cos(
√

λj t + Bj) ∀ j � 3N, (7)

in which the constants Aj and Bj have to be determined from the initial conditions r(0), ṙ(0)

of the excitation. Thus in general, the excitation relative to the ground state, r(t) − r∗, is a
superposition of oscillating motions Aj cos(

√
λj t + Bj)rj , called normal modes. Each such

normal mode describes a collective motion of all particles oscillating with the same frequency
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Figure 1. All normal modes of two-dimensional harmonically confined Coulomb systems with
N = 3, 4, 5 particles. The dots picture the particles within the ground-state configuration, and the
arrows show the direction and amplitude of the oscillatory motion. The N-independent modes, i.e.,
the rotational modes, the modes of center-of-mass oscillation (com), and the breathing modes are
highlighted.

ωj = √
λj —the normal frequency. The respective displacements of the particles are given

by the eigenvector rj . Consequently, in order to investigate the spectral properties of the
dusty plasma crystals we have to investigate the normal modes, and hence have to consider
the eigenvalue problem (4) of the Hessian Hr∗

.
For harmonically confined Coulomb systems (κ = 0) detailed theoretical studies have

been performed for d = 1, 2, 3 dimensions, see [11, 12, 18] and references therein. It was
shown that there exist three (partially degenerate) normal modes, which are independent of
the particle number N:

(i) The rotational modes with λ = 0, which correspond to a rotation of the whole system and
reflect the axial symmetries of the confinement.

(ii) The center-of-mass oscillation modes with λ = ω2
0 expressing that the center-of-mass

motion is independent of the interparticle forces [19].
(iii) The breathing mode (BM) with λ = 3ω2

0, which describes a uniform radial expansion and
contraction of all particles.

The existence of these three modes is illustrated for the two-dimensional system with
N = 3, 4, 5 particles in figure 1, where all modes of these systems corresponding to the
ground-state configuration are shown.

3. Normal modes in Yukawa systems

For harmonically confined Yukawa systems the interaction potential and thus the Hessian Hr∗

depend on the screening parameter κ . Hence, in general, the normal modes will depend on
this parameter as well. Within figure 2 this situation is shown. There, the frequencies of
all normal modes are shown for the ground state of harmonically confined Yukawa systems
with N = 16 particles and a screening parameter ranging from κ = 0 to κ = 20d−1

c .3 While
the ground states were obtained by molecular dynamics simulations [4], the normal mode

3 The unit dc = (2q2/mω2
0)

1/3 is the stable distance between two charged particles in the absence of screening [5].
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Figure 2. κ-dependence of the normal modes of a harmonically confined Yukawa system with
N = 16 particles versus screening parameter. The rotational modes, the center-of-mass oscillations
and the breathing mode are highlighted dash-dotted (red line) at ω = 0, dashed (green) at ω = ω0,
and with a (blue) dot at ω = √

3ω0 and κ = 0, respectively.

analysis (NMA), i.e., the computation of normal frequencies and normal vectors, was done by
numerical diagonalization of the corresponding Hessian.

The figure shows that there are two mode frequencies independent of screening—
corresponding to the rotational modes and the center-of-mass oscillation modes. These modes
are existing in a Yukawa system just like in a Coulomb system (and have κ-independent
frequencies) due to the symmetries of the system [6, 19, 20]. However, in general this is
not the case for the breathing mode, which has no κ-independent frequency. Actually, the
general existence of this mode is a special property of Coulomb-like interactions not featured
in Yukawa systems [17].

The existence condition of the BM becomes clear by analyzing the eigenvalue problem
(4). The standard procedure for evaluating this equation is to find the roots of its characteristic
polynomial yielding all eigenvalues and vectors and to examine whether there exists an
eigenvector rBM corresponding to a BM, i.e., describing a uniform and radial motion rBM ∝ r∗.
However, the degree of this equation is d ·N which prohibits an analytical calculation of the
eigenvalues and vectors and, consequently, prohibits general statements about the existence
of the BM. Therefore, we apply a different approach—the direct mode approach—which
focuses on just one mode: within the eigenvalue equation we directly use the eigenvector of
the breathing mode, which thus leads to the existence condition of this mode.

Additionally, we evaluate (4) within its particle components i � N , because the
potentials φ and v are given for these, and obtain

λmri =
N∑

l=1

Hr∗
il rl =

N∑
l=1

∇i∇T
l U(r)|r=r∗rl . (8)

Using the isotropy of φ and the distance dependence of v one obtains for each such (3×
3-matrix) component of the Hessian,

∇i∇T
l U(r)|r=r∗ =

[
φ′(|r∗

l |)
|r∗

l |
I3 +

r∗
l r∗

l
T

|r∗
l |3

(|r∗
l |φ′′(|r∗

l |) − φ′(|r∗
l |))

]
δil

+
N∑

k=1

′
[
v′(|r∗

lk|)
|r∗

lk|
I3 +

r∗
lkr∗

lk
T

|r∗
lk|3

(|r∗
lk|v′′(|r∗

lk|) − v′(|r∗
lk|))

]
(δil − δik), (9)

wherein I3 denotes the three-dimensional identity matrix. Thus (8) reduces to
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λmri = φ′(|r∗
i |)

|r∗
i |

ri +
(r∗

i · ri )r∗
i

|r∗
i |3

(|r∗
i |φ′′(|r∗

i |) − φ′(|r∗
i |))

+
N∑

l=1

′
[
v′(|r∗

il|)
|r∗

il|
ril +

(r∗
il · ril)r∗

il

|r∗
il|3

(|r∗
il|v′′(|r∗

il|) − v′(|r∗
il|))

]
. (10)

Now we use the aforementioned direct mode approach, i.e., we set the eigenvector r equal to
the unit eigenvector of the BM rBM = |r∗|−1r∗, which consequently leads to the existence
conditions of this mode

λBMmr∗
i = φ′′(|r∗

i |)r∗
i +

N∑
l=1

′
v′′(|r∗

il|)r∗
il ∀ i � N. (11)

These conditions show [17], that a breathing mode only exists in harmonically confined
systems with interaction potentials of the form 1/rγ (γ ∈ R �=0) or log(r), or in some highly
symmetric systems.

The breathing mode and its existence is closely related to the monopole oscillation (MO)
[12], which in strongly correlated systems is associated with the oscillation of the mean square
radius R2(t) = N−1 ∑N

i=1 ri (t)
2 = N−1r(t)2 [11, 15, 20]. This MO is particularly important

since it can easily be excited selectively by variation of the trap frequency ω0, e.g., by a rapid
change of the frequency ω0 of the equilibrated system corresponding to the excitation given
by r(0) = (1 + ξ)r∗ and ṙ(0) = 0.

In the case that a system has a BM, the MO describes the same motion as the BM and thus
has the same frequency. However, in the opposite case, as for most Yukawa systems, there are
several monopole oscillations with different frequencies. This property is directly apparent in
the spectrum 	

Ṙ2(ω) of the mean square radius motion

Ṙ2(t) = 2N−1
3N∑
j=1

ċj (t)rj · r∗ + 2N−1
3N∑
j=1

cj (t)ċj (t), (12)

which may be derived by the square of its Fourier transform 	
Ṙ2(ω) = |F

Ṙ2(ω)|2. For the
mentioned excitation the normal coordinates are given by cj (t � 0) = ξr∗ · rj cos(ωj t) and
cj (t < 0) = ξr∗ ·rj . Thus, for small amplitudes (ξ � 1) the spectrum is given by

	
Ṙ2(ω) = 2ξ 2

πN2

3N∑
j,k=1

(rj · r∗)2ω2
j (rk · r∗)2ω2

k(
ω2 − ω2

j

)(
ω2 − ω2

k

) . (13)

If the BM exists, one eigenvector rj is given by rBM, which is parallel to r∗, whereas all
other eigenvectors are orthogonal to r∗. Hence the spectrum contains only a single peak at the
breathing frequency. In contrast, if no BM exists, generally many eigenvectors rj will have
a non-vanishing projection on r∗ (cf figure 3(b)), so that the spectrum contains several MO
with different frequencies ωMO = ωj and amplitudes.

Within figure 3(a) such a spectrum, obtained from numerical NMA, is shown for a Yukawa
ball with N = 16 particles and a screening strength of κ = 4.42dc

−1. One clearly sees two
peaks, thus this system contains two different monopole oscillations. The corresponding
frequencies are ω

(1)
MO = 2.349 05ω0 and ω

(1)
MO = 2.359 54ω0.

4. Experimental results

A very intriguing experimental realization of harmonically confined (screened) Coulomb
systems are the so-called Yukawa balls in dusty plasmas. There, a finite number of plastic
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(a) (b)

Figure 3. (a) Part of the spectrum 	
Ṙ2 (ω) containing two monopole modes, obtained from

numerical NMA for a Yukawa ball with N = 16 particles and a screening strength of κ = 4.42dc
−1.

The dashed lines indicate the position of the poles of equation (13). (b) In the case of a vanishing
BM no eigenvector is parallel to r∗, but generally many eigenvectors, e.g., rj , rk, rl , have a
non-vanishing projection on it giving rise to different monopole oscillations.

microspheres are dropped into the plasma of a parallel plate rf discharge. In the plasma, the
particles arrange in concentric spherical shells (see e.g. [8, 9, 21]) which is expected to be the
ground-state configuration of harmonically trapped 3D charged-particle systems [3, 4, 6].

The harmonic confinement in the plasma is realized by a combination of various plasma
forces on the microspheres. In the vertical direction, the action of gravity is compensated by
an upward force due to the electric field in the space-charge sheath above the lower electrode
and an upward thermophoretic force due to heating of the lower electrode. Horizontally,
the particles are confined by a glass cube placed onto the electrode. This results in a 3D
harmonic confinement of the charged microspheres (see e.g. [22] for details). The charge on
the typically used microspheres of 3.5 μm diameter is of the order of 103 elementary charges,
the interparticle distance is of about 500 μm, and the shielding length in the plasma is of the
same order as the interparticle distance. Thus, screening strengths of κ ≈ 1 are typical in
these systems [5, 8, 9] justifying the term ‘Yukawa balls’ for our systems.

In the experiment, the normal modes of Yukawa balls are derived from the thermal
Brownian motion of the particles around their equilibrium positions. The thermal particle
motion is recorded with a stereoscopic video camera setup and the full 3D dynamics is
reconstructed [9, 23]. Experimentally, the normal mode spectra are obtained as the spectral
power density S�(ω) from the Fourier transform for the mode number � = 1, . . . , 3N by [16]

S�(ω) = 2

T

∣∣∣∣
∫ T

0
ċ�(t) e−iωt dt

∣∣∣∣
2

. (14)

Here, ċ�(t) = ṙ(t) · r� are the projections of the Brownian particle fluctuations with velocity
ṙ(t) onto the eigenvector of mode �, i.e., the normal mode oscillation pattern of this mode
(see e.g. [16]).

The experimental mode spectrum is shown below for a Yukawa ball with N = 10
particles. In equilibrium, the particles arrange on a single spherical shell as shown in figure 4.
As an example, also the breathing mode obtained from the experimental particle positions is
presented. The 3D coherent radial particle motion is clearly seen. (In our Yukawa balls, the
deviation from a pure Coulomb interaction is not that strong, thus the breathing mode is not
much distorted here.)

The experimental normal mode spectrum S�(ω) is shown in figure 5. It is seen that the
mode frequencies are concentrated in a narrow band at very low frequencies of about 1–2 Hz.
The dynamics of Yukawa balls occur, due to the high mass of the microspheres, on very
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(a) (b)

Figure 4. (a) Bond structure model of a 3D dust cluster (Yukawa ball) with N = 10 particles. Note
the clear spherical structure. (b) Breathing mode for this Yukawa ball derived from the experiment.

Figure 5. Experimental normal mode spectrum for a Yukawa ball with N = 10. Here, the spectral
power density is shown in gray scale (dark colors correspond to high power densities). The white
dots indicate the best fit of the theoretical normal mode frequencies to the spectral power density.

long time scales enabling the observation with video cameras. Also, the mode spectrum
closely follows the expected mode frequencies from the mode analysis. The theoretical mode
frequencies effectively depend only on the strength of the confinement ω0 in equation (1). By
fitting the expected eigenfrequencies to the observed spectral power density a nice agreement
is obtained and the confinement frequency is obtained. From the physical dimensions
of the Yukawa ball and ω0 the dust charge is determined as Z ≈ 900 for our 3.47 μm
particles [24].

5. Normal modes in the presence of dissipation

The above presented theoretical investigations of normal modes neglect several effects present
in the experiment—most of all finite-temperature and friction, cf section 4. To take them into
account the equations of motion (6) have to be extended by fluctuations and dissipation. Here,
we concentrate on the latter and include a friction force −mνṙ with ν > 0. Thus we obtain

0 = mr̈ + mνṙ + ∇U(r) = m

3N∑
j=1

[c̈j (t) + νċj (t) + λjcj (t)]rj . (15)
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(a) (b) (c).

.

Figure 6. (a) Illustration of the damped dynamics of a normal mode cj (t) for three values of ν

with the condition ċj (t < 0) = 0. (b) The corresponding spectra 	ċj
(ω). The vertical dashed line

indicates the peak position in the undamped case. (c) Damping dependence of all eigenfrequencies
(ωmax denotes the peak position of the spectrum) of a Yukawa ball with N = 5 and κ = 1dc

−1.
Darker lines highlight degenerate normal modes.

Hence, each normal coordinate fulfils 0 = c̈j (t) + νċj (t) + λjcj (t) analogous to the single
damped harmonic oscillator, and now depends on the damping strength ν. The solution reads
(ωj = √

λj ) [25]

cj (t) = Aj

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−νt/2 cos
(√

ω2
j − ν2

/
4t + Bj

)
for ν < 2ωj

e−νt/2[1 + Bj t] for ν = 2ωj

e−νt/2
[
e
√

ν2/4−ω2
j t + Bj e−

√
ν2/4−ω2

j t
]

for ν > 2ωj .

(16)

Again, the constants Aj and Bj have to be determined from the initial conditions r(0), ṙ(0)

of the excitation. The three cases correspond to normal modes, which are underdamped,
critically damped and overdamped, respectively. Within figure 6(a) the dynamics of one mode
j are illustrated for these three cases for the condition ṙj (0) = 0.

The modifications due to damping can nicely be seen within the spectrum of one normal
mode, which is given in the case of the aforementioned excitation by

	ċj
(ω) = ξ 2(r∗ · rj )

2ω4
j

2π
(
ν2ω2 +

(
ω2 − ω2

j

)2) . (17)

In the undamped case (ν = 0) this spectrum just contains a single distinct peak centered at the
normal mode frequency. In contrast, dissipation causes a red shift as well as a broadening of
this peak. These effects are shown in figure 6(b). The frequency shift of the peak at ωmax in
dependence on damping is displayed in figure 6(c) in more detail for the example of a Yukawa
Ball with N = 5 particles.

Finally, in figure 7 we present the complete power spectrum for different damping
parameters, for the previously shown system with N = 10 particles and the screening
parameter κdc = 1. Again, the red shift and peak broadening are evident. At sufficiently
large damping more and more normal modes vanish, and an increasing fraction of the power
density is concentrated around ω = 0. These theoretical results show a very similar behavior
to the experimental data of figure 5. In the experiment, dissipation is due to friction of the
microspheres with the neutral gas background. The damping parameter is somewhat difficult
to determine in the experiment, but can certainly be estimated to be ν � 2ω0. This outlines
the importance of dissipation in the considered Yukawa systems.
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Figure 7. Theoretical normal mode spectrum (17) for the cluster N = 10 and κdc = 1 for four
values of the damping ν/ω0 indicated in the figure. As initial conditions we chose cj (t = 0) = c0
for all modes. For comparison, the undamped spectrum is shown in all figures by black dots.

6. Summary and outlook

Within this work we presented a theoretical and experimental analysis of the normal modes
of three-dimensional spherically confined Yukawa clusters. Based on the predictions of [17],
we analyzed the breathing mode in more detail, showed the close relation to the existence
of multiple monopole oscillations in Yukawa systems and presented new numerical results.
Finally, we investigated the influence of dissipation on mode spectra from a theoretical point
of view, which showed qualitative agreement with the experimental results. A quantitative
comparison of theoretical and experimental mode spectra, which allows for a sensitive
diagnostics of relevant experimental parameters, including particle charge and trap frequency,
will be the subject of forthcoming work. Therefore, the influence of finite temperature on the
normal modes spectra has to be investigated as well.
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