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Abstract
Lasers have been used extensively to manipulate matter in a controlled way – from single atoms
and molecules up to macroscopic materials. They are particularly valuable for the analysis and
control of mesoscopic systems such as few-particle clusters. Here we report on recent work on
finite size complex (dusty) plasma systems. These are unusual types of clusters with a very strong
inter-particle interaction so that, at room temperature, they are practically in their ground state.
Lasers are employed as a tool to achieve excited states and phase transitions.

The most attractive feature of dusty plasmas is that they allow for a precise diagnostic with
single-particle resolution. From such measurements, the structural properties of finite
two-dimensional (2D) clusters and three-dimensional (3D) spherical crystals in nearly harmonic
traps—so-called Yukawa balls—have been explored in great detail. Their structural features—the
shell compositions and the order within the shells—have been investigated and good agreement to
theoretical predictions was found. Open questions on the agenda are the excitation behaviour, the
structural changes and phase transitions that occur at elevated temperature.

Here we report on recent experimental results where laser heating methods were further
improved and applied to finite 2D and 3D dust clusters. Comparing to simulations, we
demonstrate that laser heating indeed allows to increase the temperature in a controlled manner.
For the analysis of thermodynamic properties and phase transitions in these finite systems, we
present theoretical and experimental results on the basis of the instantaneous normal modes, pair
distribution function and the recently introduced centre-two-particle correlation function.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Complex (dusty) plasmas differ from traditional plasmas in a
number of aspects: complex plasmas, in very general terms, are
multicomponent plasmas that contain, in addition to electrons,
ions and neutral atoms, also (macro-)molecules.

4 Author to whom any correspondence should be addressed.

This may lead to substantial chemical reactivity or growth
of clusters or nanoparticles that are of high interest for
technological applications, see e.g. [1–4]. Alternatively,
macroscopically large particles (dust) can be introduced into
the plasma externally which may radically alter the plasma
properties. These ‘dusty plasmas’ have evolved into a separate
research field and are the subject of this review. Here, we
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focus on non-reactive dusty plasmas containing comparatively
large—typically micrometer sized—monodisperse plastic
spheres.

The unusual properties of these plasmas arise from the
behaviour of the dust particles and their enormously high
charge. In the plasma, the particles are subject to continuous
bombardment by the much lighter electrons, ions and neutrals.
In a radio frequency (rf) discharge, the electron temperature
is way above the ion temperature resulting in a higher impact
rate of electrons onto the originally neutral particles, compared
to the ions. As a consequence the particles become highly
negatively charged, with the charge reaching values on the
order of Qd = O(−10 000 e) elementary charges for a particle
of micron size [5]. It is due to this high negative charge
that the dust particles are strongly interacting with each other,
and the dust component of the plasma aquires a very large
electrostatic energy that may exceed the thermal energy by
orders of magnitude: the dust becomes strongly coupled
(or strongly correlated), in striking contrast to usual high-
temperature plasmas. At the same time electrons and ions
are only weakly coupled and can often be regarded as a more
or less uniform background.

Such strong correlation effects are presently of high
interest in a large variety of fields, including condensed matter,
dense plasmas (such as warm dense matter), ultracold quantum
gases or the quark-gluon plasma. In fact, dusty plasmas
serve as a prototype for studying correlation phenomena, e.g.
[6]. A particular advantage of dusty plasmas is the large
particle size and large inter-particle spacing (on the order
of several micrometers to millimeters) which allows for a
direct optical imaging of individual particles. At the same
time the large mass results in slow characteristic time scales
(on the order of hundreds of milliseconds), so the whole
dynamics of these plasmas can be studied on the single-particle
‘atomic’ level [1, 3]. Despite the purely classical behaviour,
dusty plasmas allow for unique and unprecedentedly accurate
diagnostics of strong correlation effects which are important
for other strongly correlated systems where such diagnostics
are missing.

To have a quantitative measure of correlation effects in
these highly non-ideal charged particle systems, it has been
common to use the Coulomb coupling parameter � that relates
the mean Coulomb interaction energy of two particles to the
thermal energy as5

� = Q2
d

4πε0 bWS

1

kBTd
, (1)

where the Coulomb interaction is estimated by the one of
two particles separated by the Wigner–Seitz radius, that is
related to the density by n−1 = 4πb3

WS/3 in three-dimensional
(3D) (n−1 = πb2

WS in two-dimensional (2D)6), and Td is

5 Strictly, the definition (1) is an appropriate measure for the potential energy
only when the pair interaction is Coulombic. In the case of screening, the
effective coupling parameter depends on the screening length λD [7]. For
the results reported in this paper, the dustâŁ”dust interaction is moderately
screened and the definition (1) is sufficiently accurate.
6 For macroscopic systems, the Coulomb coupling parameter is clearly
defined by the condition that each particle occupies, on average a spherical
volume (a circle in 2D) with the radius equal to bWS.

the kinetic temperature that corresponds to the dust particles’
random motion. In ideal (or weakly non-ideal), conventional
plasmas � � 1. If � exceeds unity, the system is strongly
coupled and the particle arrangement exhibits an increasingly
long range order, giving rise to liquid-like behaviour. If �

exceeds about one hundred the interaction is strong enough to
spatially localize the particles leading to a crystalline structure.
In macroscopic Coulomb systems, the critical value for the
freezing transition is around � = 175 in 3D and � = 137 in
2D [8–10].

Extended (nearly macroscopic) dust systems in 2D and 3D
have been realized in experiments for decades, see e.g. [11–16].
There, � values of several hundreds are easily achieved, even
at room temperature, as will be discussed in sections 5.2 and 6.
At these conditions the system is practically in its ground state.
Therefore—and this may be surprising—for dusty plasmas, the
major challenge for many applications is to lower the coupling
strength. The main task is to do this in a controlled manner for
instance by increasing only the dust temperature Td, without
affecting the other plasma parameters. This is particularly
important in order to study the thermodynamic properties, the
melting process and the different phases of these systems. To
achieve a controlled heating of dust clusters several methods
have been used, including variation of the rf power or the
neutral gas pressure [17–20]. However, these methods usually
alter the whole discharge environment and, thus, effectively
create a different plasma, making a ‘clean’ analysis of dust
thermal effects difficult [17, 21].

1.1. Laser heating of dust in the context of laser–matter
interaction

A suitable approach to heat the dust without affecting the
discharge environment is the use of lasers which is, therefore,
in the focus of the present review. Since laser manipulation
has become common in many fields it is of interest to put the
present activities in the field of dusty plasmas into a broader
perspective, before moving on.

The control of matter by lasers has seen dramatic progress
over the last two decades which is due to the rapid increase
of available coherent radiation sources. These are, in first
place, optical and infrared lasers but, with the progress in the
field of harmonic generation as well as of free electron lasers,
also high photon energies—from UV to soft x-rays—became
available. At the same time a tremendous variety of methods
and mechanisms to control matter with lasers is being utilized
which is briefly summarized in table 1. There we list the main
properties of coherent electromagnetic radiation and how they
are applied in different areas.

Traditionally, lasers have been used to excite electronic
transitions in atoms and molecules allowing for high precision
spectroscopy. By choosing a particular laser polarization,
certain transitions can be activated or deactivated depending on
the selection rules. In case of laser excitation of electrons into
the continuum (photoionization) the photoelectron spectrum
reveals detailed information on the target material. Related
methods such as photoelectron spectroscopy are highly
successful in atomic, molecular and condensed matter physics.
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Table 1. Examples of laser–matter interaction processes in macroscopic systems (for details and references see main text). The concepts
presently being used in dusty plasmas are highlighted in bold, see also table 2. Note that in many applications several laser properties are
active simultaneously and the highlighted property should only be understood as the dominant one.

Laser property Applications and mechanisms

photon energy • (multi-)photon excitation and ionization of atoms,
Nh̄ω, N = 1, 2, . . . molecules, condensed matter etc.

• photoemission spectroscopy
• inverse bremsstrahlung heating of matter
• photoionization of dust particles

laser polarization • selection of intra-atomic (intra-molecular) transitions,
e.g. linear vs. circular polarization

electrical field strength E, • tunnel and field ionization of atoms
potential energy −eEx • field assisted creation of electron-positron pairs

(Schwinger mechanism)

laser intensity, I ∼ E2 • heating, melting, evaporation of matter
Ohmic heat • ionization of matter, creation of dense plasmas

light pressure, p ∼ I • structuring of surfaces, micro-hole boring
• acceleration of single dust particles

short pulse duration • time-resolved diagnostics (e.g. pump-probe schemes)
• rapid excitation of non-equilibrium phenomena
• non-thermal melting of solids

field gradient of • charge confinement, ‘optical tweezers’
standing wave • confinement of neutral particles in optical lattices

field gradient of • charged particle trapping
moving wave • laser wake field acceleration

With the increase of laser intensity also nonlinear processes
such as multi-photon excitation and ionization have become
available. In complex plasmas containing reactive species
spectroscopic methods have found broad application as well,
e.g. [2, 3] and references therein, but this has not been relevant
for dusty plasmas so far. At the same time, ionization by UV
radiation has been discussed by some groups [22–26], but has
proven to be difficult. The interesting prediction is that the
dust particles acquire a positive charge, but this will not be
considered in the present paper.

Another important concept is the use of laser radiation
with a spatially inhomogeneous intensity profile such as
focused beams or interference patterns of several lasers. The
latter gives rise to optical traps or optical lattices and has
become a key tool in the field of ultracold atoms and molecules,
e.g. [27] or in the field of colloidal systems, where laser
patterns have been used to create quasi-crystals [28, 29].
Furthermore, the spatially varying field of a moving laser
wave is at the heart of particle acceleration predicted long
ago [30, 31]. In the mean time laser wake field acceleration
has been successfully realized experimentally and allows for
the generation of relativistic electron beams with MeV energy
[32–36] as well as for ion acceleration. In dusty plasmas laser
beams with spatially varying intensity profile are exploited
utilizing the intensity dependence of the index of refraction of
dust particles allowing to trap and move single particles (‘laser
tweezers’) [37–39], see also [40].

An alternative direction in laser–matter interaction is heat-
ing of matter by generating Ohmic heat. Acceleration of elec-
trons in solids easily allows to couple laser energy into the ma-
terial and to melt it. This has become a standard method in tech-
nology and is used e.g. for microsopic structuring of surfaces

as well as for drilling high quality micrometer-size holes. With
the availability of ultrashort laser pulses it has become possible
to couple the energy in a controlled way only into the electron
subsystem, without heating the lattice, and to probe—on a
femtosecond time scale—the ‘non-thermal melting’ of solids
far from equilibrium, e.g. [41, 42]. Lasers can also be directly
used to heat plasmas, via photon absorption in electron–ion col-
lisions (inverse bremsstrahlung), e.g. [43–45] and references
therein. With the help of Petawatt lasers, the combination of
laser ionization and particle acceleration allows to produce and
compress plasmas which reach densities that are comparable
to and even exceed by one or two orders that of metals. This
has led to the new fields of laser plasmas or high energy density
physics, e.g. [46, 47]. It has been predicted long ago that suffi-
ciently high laser intensities will allow to achieve even fusion
conditions [48].

The heating of dusty plasmas follows the same general
idea of transmitting momentum and energy from the radiation
to the particle ensemble by exploiting the light pressure but,
obviously, using very modest laser intensities. The specifics
here lie in the large particle size, compared to the typical laser
focus, and in the peculiar properties of finite dust clusters.
These mesoscopic particle ensembles have many properties in
common with more traditional neutral or metal clusters and
will be discussed below.

1.2. Finite dust clusters and comparison with metal clusters

The properties of finite systems have been first studied in
nuclear matter and more recently in the context of cluster
physics. Finite 2D and spherical 3D dust clusters in a (nearly)
isotropic harmonic trap provide a fascinating opportunity
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Table 2. Comparison of atomic clusters (example of metal clusters) with finite dust clusters. In the lower part the relevant cluster
manipulation approaches by means of lasers are outlined. Comments: a–streaming electrons and ions may give rise to anisotropic and even
attractive dust–dust interaction, depending on the plasma parameters and location in the discharge, e.g. [63–65].

Property Metal clusters Dust clusters

size, geometry N ∼ 10 . . . 104; 3D N ∼ 10 . . . 104; 2D, 3D
elementary constituents single atoms spherical plastic particles
particle radius R R ∼ aB R ∼ 1 . . . 10 µm

interparticle distance r̄ r̄ ∼ few aB r̄ several 100 µm
confinement attraction from external potentials:

central ionic core trap, thermophoresis etc.

pair interaction Coulomb repulsion screened Coulomb
between electrons (Yukawa) repulsion

interaction strength fixed externally controlled

coupling parameter valence electrons: dust component:
rs = r̄/aB ∼ 2 . . . 5 � = Eint/Ekin ∼ 10 . . . 104

stationary state equilibrium non-equilibriuma

ground state concentric shells concentric shells

Laser manipulation σ � R, r̄ r̄ � σ > R
laser spot size σ homogeneous field fast spot movement:

across cluster on average homogeneous
force across cluster

• photoionization, • single-particle diagnostics
• collective ionization by light scattering
• Coulomb explosion • particle control

by optical tweezers
laser heating • via inv. bremsstrahlung • via light pressure

to systematically study the physics of mesoscopic few-
particle systems. The reason is the above mentioned unique
opportunity provided by dusty plasmas to study structure,
dynamics and thermodynamics of all individual system
particles on the kinetic level, i.e. resolving simultaneously all
particle trajectories. This is of high interest for finite systems
in a variety of other fields including gas or metal clusters,
electrons in quantum dots, trapped ions, ultracold gases and
so on. In none of these fields observations on the kinetic level
are possible.

Finite 2D clusters have been studied first, already for quite
some time [49–54]. More recently also spherical 3D dust
crystals could be produced [55], and their low-temperature
structure (which, in general, is more sensitive to screening
than for 2D systems) is now well understood (for details see
section 2.2). In the case of strong coupling, the excitation
behaviour is dominated by collective modes of the whole
system rather than by single particle dynamics. This is typical
not only for finite dust clusters but for mesoscopic systems in
trapping potentials in general. The frequency of some of these
normal modes (in particular that of the monopole or ‘breathing’
oscillation) has been found sensitive to the internal properties
of finite systems such as type of interaction [56, 57, 59] and, in
the case of quantum clusters, also on the interaction strength
(on the coupling parameter) [58] or particle number [60]. This
has led to the idea to use the normal mode frequencies as
a novel kind of ‘spectroscopy’ for strongly correlated finite
systems [61], for a recent overview see [62].

Of particular interest is the gradual crossover, with
increased cluster size [49, 53], from single atoms to
macroscopic condensed matter [66, 67]. In this field, also the
interaction of lasers with finite clusters has been studied in

great detail. Due to the similarity of these systems to the finite
dust clusters that are in the focus of this review we provide
some comparison in table 2. In both cases clusters in a similar
range of particle number are studied. The main difference is the
different type of particles—atoms (or molecules) versus highly
charged plastic spheres—and the different type of confinement.
In the case of metal clusters the valence electrons are kept
together by the central Coulomb force from the ionic core
of the cluster. In contrast, in the case of dust clusters the
pair interactions are purely repulsive and the confinement is
provided by an external potential (or combinations thereof).
Another key difference is that, in metal clusters, the coupling
strength is fixed by the governing Coulomb forces between all
particles. In contrast, in dust clusters the charge of the grains
and their distance can be modified by changing the plasma
parameters. Nevertheless, the dust systems usually feature
only relatively large values of the coupling parameter �.

Among the most interesting questions both for finite metal
clusters and finite dust clusters is the size dependence of
their properties. This includes the ground state structure,
the excitation spectrum and the thermodynamic properties.
Since a central topic of this review is phase transitions this
involves the question of size dependent melting temperatures.
It is known for a long time that the melting temperature of
small clusters is lower than the bulk melting temperature.
This topic has been studied for metal clusters in some
detail. We mention experimental studies, e.g. [68–70] and
references therein, theoretical work, e.g. [71, 72] as well
as computer simulations, e.g. [73, 74]. There is overall
consensus that the melting temperature of such clusters with
short-range interaction decreases proportional with the cluster
diameter. For harmonically confined Coulomb clusters [75]
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also a decrease of the melting temperature was observed in
simulations which is almost linear in the fraction of particles
in the surface layer. For dust clusters, no such general trend
is known yet due to the lack of systematic studies of larger
clusters and due to the difficulties in controlled cluster heating.
The laser heating technique described in this review will pave
the way towards such studies.

When lasers where first shot on finite metal clusters,
the experiments revealed a surprisingly effective energy
absorption [76]. Subsequently, also collective absorption
mechanisms (by coupling to plasmons) were observed [77, 78].
These effects could be successfully explained by theoretical
modelling [79] and complex many-particle simulations, for
an overview see [80]. Among the theoretical difficulties is the
proper treatment of electronic quantum many-body effects, see
e.g. [81, 82]. A detailed discussion of the various laser–cluster
interaction mechanisms has been given in [83], see also the
recent reviews [80, 84].

Among the most interesting effects of laser illumination of
metal clusters is the emission of higher harmonics of the laser
radiation [85], the emission of energetic electrons and, in case
of strong ionization, Coulomb explosion of the whole cluster
[86]. A similar rapid expansion of Coulomb and Yukawa
dust clusters has been recently predicted in [87]. Here laser
illumination is not necessary at all, it is sufficient to turn off the
confinement potential. Similarly, many other effects observed
for metal clusters in the presence of intense laser radiation can
also be expected for dust clusters. However, more recently the
focus was on a gentle heating of dust clusters so that the system
is transfered from its ground state into a state with moderately
elevated temperature.

As discussed above a focused low intensity laser beam
is well capable to accelerate single dust particles. Similarly,
stationary laser beams were used to excite shear flows in
monolayer dust crystals [88, 89] or rotations in finite 2D
clusters [53]. Mach cones could be excited by moving
the laser spot through the dust crystal [90, 91]. A further
application of moving laser spots is the realization of a heat
source for the dust component [92–95]. A more detailed
description of these pioneering laser experiments is given in
section 3.1. An improved heating scheme allowing to realize a
true thermodynamic heating with an isotropic, Maxwellian 2D
velocity distribution has been applied by Schablinski et al [96]
to finite 2D dust clusters. A first heating concept for finite 3D
clusters has been realized by Schella et al [97], see section 5.2.

The goal of this review article is to present an overview
on these recent experimental developments, compare them
to theory and computer simulations and to discuss possible
future applications of laser manipulation of dust clusters. We
start by giving a brief overview on the properties of finite 2D
and 3D dust clusters in section 2. Then, we discuss the laser
heating principle and how it is used to reduce the coupling
strength in a controlled way (section 3). Dedicated numerical
simulations of the laser heating are presented in section 4.
Experimental results for finite 2D and 3D dust systems are
presented in sections 5.2 and 6. We conclude in section 7
with an outline of future applications, including spatially
inhomogeneous plasmas and time-dependent processes.

2. Structural, thermodynamic and transport
properties of finite dust clusters

2.1. Structural properties of extended dust clusters

As described in the introduction, electrons and ions screen
the repulsive interaction of the dust grains. The interaction
between the dust particles is, in most cases, well described by
a Yukawa-type pair-potential

�Y
(�ri, �rj

) = Q2
d

4πε0

∣∣�ri − �rj

∣∣ · e−κ|�ri−�rj |, (2)

where κ = λ−1
D is given by the inverse Debye length taking

into account the screening effect of electrons and ions7. Wake
effects due to the streaming ions (for recent overviews see e.g.
[63–65]) are neglected in the presented results.

Extended 2D dust systems arrange, in the solid state, in a
hexagonal lattice [11–13]. These systems are of special interest
since the mechanism of thermodynamic phase transition in 2D
systems from the ordered solid phase to the unordered liquid
phase is still not finally clarified [98]. On the one hand, a
first-order transition is predicted by the formation of grain
boundaries between crystalline patches [98, 99]. On the other
hand, a two-step second-order transition with an intermediate
hexatic phase, the so-called KTHNY scenario [98, 100–102], is
expected. A recent numerical study concludes that the hexatic
phase is metastable and vanishes in the long-time limit [103].
Thermodynamic heating of 2D dust crystals by means of laser
techniques might, therefore, be very beneficial in addressing
these issues from the experimental side, see section 5.1.

2.2. Structural properties of finite dust clusters

The striking property of solid Yukawa clusters in 2D as well
as in 3D is their well ordered structure. This structure and
the loss of order with increasing temperature is accompanied
by a sequence of phase transitions (or structural transitions)
which are peculiar in finite systems [51, 104]. Details of these
transitions are still open and of high interest for many finite
size systems. They depend on the particular crystal structure
which we, therefore, review in the following.

The Hamiltonian of the N -particle Yukawa cluster is (prior
to laser manipulation) given by [3]

H =
N∑

i=1

1

2m
�p2
i +

N∑
i=1

mω2
0

2
�r2
i +

∑
i<j

�Y
(�ri, �rj

)
, (3)

where the first term describes the kinetic energy, the second
the confinement energy due to the harmonic trap of strength
ω0 and the third the mutual Yukawa interaction energy. In this
model, all dust grains are assumed to be equal in mass m and
charge Qd.

Small 2D dust clusters typically consist of concentric
rings [49, 51]. The core region of larger clusters with several

7 The Debye length λD =
(

q2
e n̄e

ε0kBTe
+

q2
i n̄i

ε0kBTi

)−1/2

incorporates screening of

electrons and ions. qe (qi) is the electron (ion) charge, n̄e (n̄i ) is the average
electron (ion) density and Te (Ti) is the electron (ion) temperature.
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hundred particles, in contrast, shows a hexagonal structure, like
in infinite systems. This lattice has dislocations at the outer
shells, where the circular boundary has to be matched [105].

Finite 3D dust clusters consist of spherical shells instead
of rings [55, 106]. Due to their spherical shape, these
clusters are called Yukawa balls (or Coulomb balls, when
screening can be neglected). This structure has been measured
experimentally [55, 107] and is reproduced in first-principle
simulations–molecular dynamics (MD) or Monte Carlo (MC)–
and has been investigated in detail for both Coulomb balls
[108–110] and Yukawa balls [111, 112]. The general trend is
that, when the screening parameter κ increases, more particles
occupy the inner shells, and—even in the ground state—the
average density becomes inhomogeneous, decaying towards
the cluster boundary [113, 114]. This is in striking contrast
to classical Coulomb clusters which have, at T = 0, a
homogeneous mean density8.

Recently, also several analytical theories for the shell
structure in 3D have been developed. The local density
approximation as a continuum theory accurately describes
the mean density profile of the spherical clusters [113, 114],
but it misses the formation of shells. The positions and the
populations of the shells of Coulomb balls are well reproduced
by a slightly modified version of the hypernetted chain
approximation which can be adapted to particles interacting
via a Yukawa potential as well [115–118]. Beyond the radial
shell structure, 3D dust balls exhibit a well ordered intra-shell
structure at strong coupling. In contrast to a flat 2D system, the
spherical curvature requires a fraction of pentagonal Voronoi
cells in the hexagonal pattern on the shell [110, 119].

2.3. Thermodynamic properties and phase transitions

As the ground state properties of finite dust clusters are well
understood by now [108–112], further investigations concen-
trate on thermodynamic properties at elevated temperatures.
When a cluster is excited by feeding thermal energy into the
system, metastable states with energies above the ground state
energy E0(N, κ) are occupied. These metastable states may
differ from the ground state with respect to the occupation
numbers of the shells or in the particle configuration within
the shells. The metastable states of Yukawa balls as well
as their increased population with temperature were investi-
gated in both experiment [107, 120] and first principle simu-
lations [121, 122]. Among others, these simulations allowed
to determine the heights of energy barriers between different
metastable states [121–123]. This ‘fine structure’ [110] is ob-
served for 3D but not for 2D clusters.

When the temperature is increased a transition from a
well ordered structure with thin shells and a highly symmetric
intra-shell order (3D) towards a disordered particle fluid-
like state is observed. It is an interesting question whether
this process occurs rapid and constitutes a phase transition,
as in macrocscopic systems. While many similarities to

8 Nevertheless, as a reasonable first approximation for the average density
one can often use the particle number N and the radius of the outermost shell
RC, 〈n〉 ≈ N/(4πR3

C/3)

phase transitions have indeed been observed9, there are also
differences: the first is that in finite systems ‘melting’ requires
a finite temperature interval. The second is that melting
may involve a sequence of distinct processes. Therefore,
in order to resolve and understand these processes, the
concepts for characterization of phase transitions known from
macroscopic systems have to be re-considered and adapted. In
particular, structural parameters are required that are suitable
to characterize the phase transition. The first quantity that
comes to mind is the heat capacity, (the amount of heat δQ

required to heat up the system a temperature δT ) which is
a widely used melting parameter e.g. in solid state physics.
However, measuring the heat capacity is challenging in dusty
plasmas. The dust subsystem exchanges energy with electrons,
ions and neutrals making it very difficult to extract the pure
heat capacity of the dust system with a particle number that is
negligible compared to the number of the surrounding plasma
constituents [75]. In contrast, the pair distribution function
and, even more, the C2P correlation, discussed in the next
section, have proven to be well suited for this purpose in theory
as well as in experiments.

Let us now summarize the known results about ‘phase
transitions’ in finite dust systems. In two dimensions, for
the loss of the ring structure, two different melting processes
were identified. The first process is attributed to the rotation
of one ring with respect to the other rings [51–53]. The
required energy for such a rotation crucially depends on
the exact occupation number of the rings. For example,
the commensurate configuration (‘magic number’) N = 19
(1-6-12) is very stable against such inter-shell rotations (due
to the matching particle numbers on the inner and outer shell
this cluster has a perfect hexagonal symmetry). In contrast, the
N = 20 (1-7-12) configuration is extremely unstable against
this excitation [53] and has a drastically reduced inter-shell
rotation barrier and melting temperature. The second melting
process is associated with particles undergoing a transition
between two adjacent rings and is called ‘radial melting’. It,
typically, takes place at substantially higher temperatures [21].
It is worth noting that the same kind of two-stage melting
process is observed in finite quantum clusters [124, 125],
indicating that these are correlation effects which are of high
interest also beyond the field of dusty plasmas.

The complexity of the melting process increases when
advancing from 2D to 3D clusters [123, 126]. Besides the
melting of the radial structure and the inter-shell rotation, a
third melting process emerges that is connected to the intra-
shell order [126]. However, this classification is not strict
since the interplay between the different melting processes in
3D clusters is utmost complex and there is, in general, no
separation of the different processes. Thus many interesting
questions are still open that have to be answered by experiments
and theory.

In order to trigger phase transitions in dusty plasma
experiments, selective control over the dust kinetic temperature

9 As the solid and fluid ‘phases’ are, strictly speaking, concepts defined in the
macroscopic limit the same holds true with phase transitions. Nevertheless,
the processes in many finite systems are very similar and the application
of thermodynamic concepts is useful. Often though the term ‘crossover’ is
preferred in comparison to phase transition.
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is essential. In particular, it is desirable to feed energy
into the random dust motion without changing other plasma
parameters such as the neutral gas pressure, the electron
and ion temperatures and the flow velocity of the ions.
A further requirement is that the entire cluster should be
heated homogeneously while preserving an isotropic velocity
distribution. As will be described in detail in section 3, this
selective control over the dust temperature is indeed possible—
by the means of intense laser light.

2.4. Key quantities for the analysis of finite dust clusters

An important structural parameter that characterizes the order
(and its loss during melting) in extended systems is the radial
pair distribution function g(rij ) = g(|�ri −�rj |). It is commonly
defined by the average number of particle pairs found at a
distance of rij divided by the number of pairs which one would
find in a homogeneous (i.e. uncorrelated) system with the same
density. The first maximum of g reflects the mean inter-
particle distance between the particles. An algebraic decay
of the envelope of g over rij indicates a long range order,
characteristic of the solid regime. Moreover, the height of
the first maximum allows to detect a melting line in the (�, κ)

space [7].
The radial pair distribution function for finite 2D and

3D clusters is shown in parts d of figures 2 and 3,
respectively10. g(r) drops to zero after a few nearest neighbour
distances for finite clusters in both 2D and 3D. For obvious
reason, a true ‘long range behaviour’ cannot be investigated
for finite clusters. Nevertheless, g(r) contains detailed
information about the thermodynamic state of the cluster and
its temperature dependence. In particular, a fine structure
of the peaks in g(rij ) is visible at high coupling strength
(low temperature), indicating a frozen structure. When the
temperature is increased, the subpeaks disappear. Finally, at
a moderate coupling strength, see curve � = 10 in figure 2,
the pair distribution function has only a single peak followed
by a monotonous decay. The classification of inter-shell and
intra-shell melting is not possible by means of this quantity
as sampling the modulus of the distance does no distinguish
whether the particles of a pair are on one shell or on different
shells.

For this reason, the C2P correlation function g2(rI, rII, ϕ)

is introduced which takes into account the radial position of
both particles as well as their angular distance with respect to
the trap centre [97, 127]. A sketch of the sampled coordinates
is shown in figure 1 for a 3D Yukawa ball consisting of two
spherical shells and one particle in the centre. To evaluate the
C2P, the sampled two-particle probability density ρ2(rI, rII, ϕ)

is computed and normalized by the uncorrelated probability
density (i.e. the function which one would find in a system
with the same radial structure but homogeneously filled shells)
ρuncorr

2 (rI, rII, ϕ),

g2 (rI, rII, ϕ) = ρ2 (rI, rII, ϕ)

ρuncorr
2 (rI, rII, ϕ)

. (4)

10 The pair distribution function of finite clusters is computed by introducing
discrete bins of width �r , counting the average number of particle pairs with
a distance in the interval [rij , rij + �r) and dividing by the bin volume.

r1

r2

Figure 1. Yukawa ball with N = 60 particles consisting of two
spherical shells and a single particle in the centre. In order to sample
the centre-two-particle (C2P) correlation function based on the
coordinates, for each particle pair, both radial coordinates rI and rII

as well as the angular pair distance ϕ with respect to the trap centre
are recorded. The Voronoi grid of the intra-shell particle
configuration is shown in grey.

Since ρ2(rI, rII, ϕ) is invariant under rotation of the entire
cluster, it is not necessary to remove a rigid rotation before
sampling.

The C2P contains very detailed information on the
structure of finite clusters and useful special cases. For
example, integration of g2 over both radial coordinates over
a range corresponding to one shell allows one to extract the
angular pair correlation function within that shell. On the
other hand, when only one radius coordinate is integrated of the
width of one shell, the C2P contains information on the relative
radial and angular arrangement of the particles of the same shell
as well as from different shells. To visualize this, g2(rI, ϕ)

can be plotted in a color map, as is done for a 2D cluster, in
figure 2, and a 3D cluster, see figure 3. In this color map, the
intra-shell structure is responsible for the maxima and minima
in ϕ-direction. While the data in the figures are from MC
simulations, equally well one can use data from experiments
with finite dust clusters, as is shown below in figure 12.

For the 2D cluster with N = 25 particles, depicted in
figure 2, a reference particle from the inner shell is chosen by
the integration range around rI ≈ 0.7. Since the inner shell
consists of three particles, the intra-shell neighbours appear as
a peak at ϕ = 120◦. At � = 1000, the distinct peaks found
around rII ≈ 1.6 show that the angular orientation of the second
shell with nine particles is locked with respect to the inner
shell. This inter-shell order disappears between � = 1000 and
� = 100 where g2 is smeared out in angular direction. At
moderate coupling, � = 10, hardly any angular correlations
remain and also the radial order is lost. Particle transitions
between different shells are revealed by a finite density in the
radial regions between the shells11.

Consider now a 3D Yukawa cluster with N = 60 particles,
see figure 3. In the ground state (and at strong coupling), the
particles are found in a configuration which has one particle
in the centre, 15 particles on the inner shell and 44 particles

11 Note that, at very strong coupling, the correlation function in the region
between two shells cannot be calculated since both ρ2 and ρuncorr

2 become
zero.
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Figure 2. (a)–(c) C2P correlation function for a 2D Coulomb cluster with N = 25 particles for different coupling strengths. The ground
state configuration consists of three concentric rings, see inset in (d). The first radial coordinate rI is integrated over a range corresponding to
the inner shell indicated by the arrows. Intra-shell correlations are visible at rII ∼ 0.7 and φ = 120. Pronounced inter-shell correlations with
particles on the second shell are found at rI ∼ 1.6 for strong coupling. (d) The radial pair distribution function g(rij ) shows distinct peaks at
high � which vanish when � is being decreased. Note that g(rij ) decreases to zero at large distances for all couplings, due to the finite size of
the cluster. Results are from a MC simulation, � is defined with the length unit r0 = [Qd/(4πε0mω0)]1/3 as the characteristic pair distance.

on the outer shell (44-15-1). Again, one reference particle
is chosen from the inner shell by integrating over rI. Due to
the complexity of the particle composition on a spherical shell
compared to the composition on a ring in 2D, the peaks at
rII ≈ 1.2, indicating intra-shell correlations, are not as sharp
as for the 2D cluster at high coupling. Inter-shell correlations
appear as dark and bright areas in the horizontal stripe at radius
rII ≈ 2.4 that corresponds to the outer shell. At moderate
coupling, � = 10, the angular correlations are lost and frequent
transitions between the shells take place as seen by the radial
extension of the density.

2.5. Transport properties

Besides thermodynamic properties, also transport coefficients
and their dependence on parameters like temperature or the
magnetic field strength are important characteristics of dusty
plasmas. A particularly important example of transport
coefficients is the diffusion coefficient. In dusty plasmas,
diffusion was investigated in detail in macroscopic systems,
e.g. [128, 129] and references therein. In particular, in two
dimensions an anomalous diffusion was found [130–133]
which turned out to be a transient effect [134]. Furthermore
simulations were performed for magnetized dusty plasmas.
Here, the diffusion coefficient D⊥ perpendicular to the
magnetic field as well as the parallel diffusion coefficient D‖
were found to be strongly affected by the magnetic field in the
strong coupling regime approaching Bohmian diffusion (decay
with B−1) [129]. Recently diffusion in a 2D one- and two-
component magnetized strongly coupled plasma was studied

and interesting behaviour of the diffusion coefficients of both
components was reported [135].

One way to compute (or measure) the diffusion coefficient
in a macroscopic system is to use the mean square displacement
(MSD)

ur(t) =
〈
|�r(t) − �r(t0)|2

〉
N

= 2 dim Dtα, (5)

as an average over all N particles. Here dim is the system
dimensionality (2 or 3) and α is the diffusion exponent
which equals one for normal diffusion. However, the long
time behaviour of the MSD has only limited meaning for
mesoscopic systems since there the particles reach the cluster
border after a few inter-particle distances [136].

Therefore, a different method is required to calculate the
diffusion coefficients in small clusters. The instantaneous
normal mode (INM) analysis has proven successful to this
purpose [137–142]. This method deduces dynamic properties
of a liquid state from the curvature of the energy landscape
of the momentary configuration of the cluster. The first step
is to calculate the dynamical (Hessian) matrix of the potential
energy in the Hamiltonian, equation (3), as

A =
(

∂2E

∂riα∂rjβ

)
, (6)

where i, j are particle indices and α, β indicate the (two
or three) components of the coordinates. The eigenvalues
of the this matrix present the squared eigenfrequencies ω2

l

of the system. In a stable state, all these eigenvalues are
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Figure 3. (a)–(c) C2P correlation function for a 3D Yukawa (κ = 1) ball with N = 60 particles for different coupling strengths. The ground
state configuration consists of two concentric spherical shells and one particle in the centre. The first radial coordinate rI is integrated over a
range corresponding to the inner shell (arrows). Intra-shell correlations are visible at rII ∼ 1.3. Inter-shell correlations with particles on the
outer shell are visible at rI ∼ 2.2 by the angular modulation of g2(rII, ϕ). (d) The radial pair distribution function g(rij ) shows distinct peaks
at high � which vanish when � is decreased. Note that g(rij ) decreases to zero at large distances for all couplings, due to the finite size of
the cluster. Results are from MC simulations, � is defined with the length unit r0 = [Qd/(4πε0mω0)]1/3 as the characteristic pair distance.

positive resulting in real eigenfrequencies which reflect stable
oscillations of the particles in the potential cage formed by their
neighbours [143, 144]. A liquid instantaneous configuration,
in contrast, has also negative eigenvalues of A, resulting in
purely imaginary eigenfrequencies reflecting unstable modes.

The second step is to calculate the spectral density, ρ(ω),
which is normalized to unity,

∫
dωρ(ω) = 1. In turn, we

average over the normal modes of many configurations

ρ(ω) =
〈

dim·N∑
l=1

δ(ω − ωl)

〉
. (7)

This density is composed of a stable part, ρs(ω), with real
frequencies, and an unstable part, ρu(ω), with imaginary
frequencies. The unstable part ρu(ω) is associated to a negative
curvature in the momentary potential landscape. As described
in [137–142], especially ρu(ω) can be related to the diffusion
constant. The self-diffusion constant is expressed as [137–142]

D = kBT

m

∫
ρ(ω)

τh

1 + τ 2
h ω2

dω, (8)

and depends on the temperature kBT , the particle mass m and
the average ‘hopping time’ τh for the transition across potential
barriers between two local potential wells. This time is known
as the inverse hopping frequency and calculated as

τ−1
h = c

∫
ω

2π
ρ(ω)A exp

(
−B

ω2

kBT

)
dω, (9)

where c ≈ 3 is a constant taking into account the different
routes to escape from a local potential minimum and the

constants A and B are obtained from an exponential fit of
ρu(|ω|)/ρs(ω). For details, we refer the reader to [137–142].

3. Controlled change of the coupling strength by
laser manipulation

3.1. General concept

In order to obtain valid information on thermodynamic
properties it is essential to gain reliable control on the coupling
parameter of the system. According to equation (1), three
possibilities exist to control �: (i) controlling the charge Qd

of the particles, (ii) controlling the inter-particle distance bWS,
and (iii) controlling temperature T . With � ∼ Q2

d, already a
moderate variation of charge allows to change the coupling
strength considerably. Thus, controlling the charge on the
particles is the most tempting approach. However, this is not
feasible in practice. Qd is determined by geometric properties
of the particles (such as the particle radius) and by the plasma
conditions in the vicinity of the particles. Except for rare
special conditions, the geometric properties cannot be altered
during experiments and the local plasma conditions are not
solely set by the discharge parameters but are modified by
neighbouring particles as well. Thus, the charge is not directly
controllable by means of external parameters such as discharge
power, neutral gas pressure or bias voltages. Each will affect
the plasma as well as the particle arrangement and thus result in
a rather complex parameter dependence. Especially the inter-
particle distance is strongly determined by the mutual particle
repulsion, i.e. the particle charge, and the external confinement.
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Thus, there is no easy access to control charge and inter-particle
distance independently. Therefore, to decrease the coupling
strength, temperature is the only remaining control parameter.

3.2. Kinetic and surface temperature of dust particles

Due to the macroscopic size of the particles (at least) two
temperatures have to be distinguished: the kinetic temperature
T i of the particles and the particle surface temperature T i

s ,
where ‘i’ labels different dust particles (we use the notion
‘temperature’ for the mean kinetic energy of the particle).
To understand the physical difference of these temperatures
we have to take a microscopic view point: The dust grains
are solid bodies consisting of a very large number N of
molecules (their atomic substructure and electronic properties
are not relevant in this context). A transfer of energy to the
particle from external sources will, in general, excite all 3N

degrees of freedom of the molecules. Among them are 6
degrees of freedom (‘centre-of-mass’ (COM) modes) which
are related to a collective displacement or a rotation of all
particles which leave all inter-molecular distances unchanged.
In contrast, the remaining N −6 degrees of freedom are related
to intramolecular vibrations (phonons, ‘relative modes’). It
is easy to verify that the Hamiltonian of this system of N

molecules can be split into a centre of mass and a relative
part which are independent (they commute). Therefore, only
the vibrations contribute to the surface temperature T i

s . On the
other hand, the kinetic temperature (energy) is connected only
to the COM modes—in fact, only to the translational degrees
of freedom. Now, in case of laser heating, predominantly the
COM modes are excited via the radiation pressure, see the
discussion in section 1.1. This is due to the large spot size
compared to the intermolecular distances (in order to excite
the relative modes there should exist a substantial field gradient
on the scale of the intermolecular separation which is not the
case). Still, an open question is to what degree individual
photons are absorbed by the molecules which could lead to an
excitation of the relative degrees of freedom and, eventually,
to a slight increase of the surface temperature, but this effect
will be neglected here.

The surface temperature is almost the same for all particles
(provided they are under the same plasma conditions), T i

s ≈ Ts,
because it arises from a very large number of coupled modes of
many particles N . In contrast, the kinetic energies of individual
particles (i.e. the individual Ti) are, in general, different. This
is because the displacements of individual dust particles caused
by lasers are, to a large extent, random, as is the case with the
random displacements of the molecules of a gas. And as in
the case of a gas, collisions between all dust grains eventually
drive the system to thermodynamic equilibrium (with respect
to the collective degrees of freedom). For a classical system
one would expect that a Maxwellian velocity distribution is
established, the width of which then reflects the overall kinetic
temperature T . This expectation is fully confirmed by our
simulations and the laser heating experiments discussed below,
see figure 5.

The decoupling of centre of mass and relative degrees of
freedom and, correspondingly, of T i and T i

s (and, therefore

also T and Ts), has been verified–indirectly–experimentally.
Here we mention detailed studies of the surface temperature
by Maurer and Kersten [145] for dust particles doped with
a temperature sensitive fluorescent dye. They concluded,
from an energy balance model, that T i

s scales roughly linearly
with the rf power. At low rf discharge powers, T i

s has been
found slightly above room temperature. In contrast, in the
experiments reported below, the kinetic temperature is found
significantly higher than room temperature and thus it may
strongly exceed T i

s . This is because the radiation pressure from
the laser(s) implies a substantial momentum transfer to the
particles. Combined with their small weight and low friction
in the plasma, these laser beams are capable to significantly
accelerate individual dust particles.

Returning to our original goal—a control of �—we
conclude that only the kinetic temperature has the meaning
of thermodynamic temperature. (We mention that this holds
rigorously only in the thermodynamic limit, however, many
simulations and experiments indicate very similar behaviour
in the case of finite clusters.) So, in the following we
will concentrate entirely on the kinetic temperature T . We
expect that variation of T (and hence �) gives access to the
thermodynamic properties of finite dust clusters and to phase
transitions. The only requirement which we have to fulfill is
that the employed heating scheme should guarantee a truly
random character of the individual kinetic temperatures T i . In
other words, the excitation should act like a thermostat for dust
particles allowing for equilibration by particle scattering. As
we will see below, properly chosen laser heating fulfills this
requirement very well and allows for spatially homogeneous
and stationary heating.

Finally we mention that, unlike Ts, the kinetic temperature
T cannot be obtained experimentally from a conventional heat
flux analysis. Recent investigations by Fisher et al [146]
state that electrostatic fields in the plasma background provide
a significant contribution to the kinetic temperature of dust
particles. However, a complete understanding of the involved
processes is still missing and this makes it difficult to control
temperature this way. These questions are beyond the present
review and are not crucial for our subsequent analysis. In the
experiments discussed below, the kinetic temperature (kinetic
energy) of individual particles is recorded directly by tracking
all particles. This gives access to the collective properties of the
COM degrees of freedom of the entire dust cluster, including
the power specturm and the velocity distribution.

3.3. Realizing laser heating of dust particles

The idea to transfer momentum from a laser beam to a
dust particle goes back to the early days of dusty plasma
research [147–152] and has been used for many purposes so far.
This includes the investigation of particle interaction potentials
[63, 153, 154], the excitation of waves [147, 151], study of
Mach cones [90, 91, 155, 156] or the stability and normal mode
analysis [53]. The first systematic laser heating experiments
were performed by Wolter and Melzer [92] and by Nosenko
et al [93, 94]. In the experiment of Wolter and Melzer [92] the
spot of a laser beam is rapidly moved via scanning mirrors to
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(b)
top view
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Figure 4. (a) Setup for a laser heating experiment using four laser beams. The spot of each laser beam is moved through the 2D plasma
crystal layer by independently controlled the scanning mirrors. The scanned area is large enough to cover the entire crystal. The radiation
pressure force impels the particles in the �e‖ direction. (b) The improved heating method moves the spot at a constant speed in both directions
until the border of the scanned area is reached. At this point, a new speed is chosen randomly for the inverse direction. Reproduced with
permission from [96], Copyright 2012 AIP Publishing LLC.

one position in a 2D dust cluster and remains at this position
for about one tenth of a second, accelerating dust grains during
this time. Then, the laser spot is rapidly moved to the next
randomly chosen position via galvanometer mirrors. A similar
heating scheme has been developed in Greifswald in order to
manipulate finite 3D clusters [97]. There, a laser beam is used
to manipulate the cluster from the horizontal direction using
this ‘point and shoot’ technique. In this experiment, a near
Maxwellian velocity distribution of the particles is realized,
but with different kinetic temperatures in the beam direction
and perpendicular to it.

The experiment of Nosenko et al [93, 94] exploits two
opposing laser beams which were directed onto a 2D plasma
crystal using scanning mirrors. Driving these scanners with
sinusoidal signals at an irrational frequency ratio a well defined
area of the plasma crystal is scanned (i.e. heated) in a Lissajous
figure-like fashion. In addition, the opposing beam setup
assures that the transfered momenta cancel on average, while
the kinetic energy of each particle is raised as a result of
non-compensated momentum fluctuations. Nosenko et al
showed that their laser heating results in a Maxwellian velocity
distribution parallel and perpendicular to the optical axis.
However, the temperature in perpendicular direction was found
to be significantly lower. Obviously, the viscous damping of
the neutral gas impedes that collisions redistribute sufficient
energy in perpendicular direction.

To overcome this limitation recent laser heating
experiments for 2D clusters use four laser beams, where
each optical axis is equipped with two opposing beams and
perpendicular orientation of both optical axes [96, 157], see
figure 4(a). In addition, the scanning procedure has been
optimized. The reason for this is that a scanning scheme based
on Lissajous figures results in a velocity power spectrum where
strong harmonics of the scanning frequencies are observed.
This is an indication that the periodicity of the driver causes
individual particles to move with the same periodicity, i.e.
between two kicks of the laser the particle velocity decreases
significantly. Therefore, the optimized scanning procedure
(see figure 4(b)) assures that each particle is driven by a laser
beam before its motion originating from the previous laser
drive is damped out. Thus, the requirement that each spatial
position is covered by the scanning procedure is only sufficient

if the maximum time between two complete scans is less than
the inverse of the damping rate.

The experiments of Schablinski et al demonstrated that
this is feasible for small clusters (N < 100). Their measured
velocity spectra show no residual peak of the scanning lasers.
Figure 5 summarizes the basic features of their heating method.
In figure 5(a) the velocity distributions of the heated system
are clearly Maxwellian. Plot (b) stresses that the Maxwellian
character is even obtained if the velocity distribution is checked
for each particle individually. The small scatter in particle
temperature is a clear indication that the heating process is
spatially homogeneous. Therefore, the laser heating with
four laser beams and an optimized scanning procedure can be
regarded as an ideal thermostat for 2D dusty plasma crystals.

4. Theoretical description of 2D laser heating

In this section, we first describe how the 2D laser manipulation
experiment described above is simulated with the Langevin
molecular dynamics (LMD) method [96, 157, 158] and then
develop an analytical model for the achieved temperature.
We explicitly study the elaborate heating scheme used in
the experiments that will be presented below in section 5.2.
The purpose of such computer simulations is to suggest
optimal values for the heating parameters and to recommend
future experiments like inhomogeneous heating. Moreover,
computer simulations provide the possibility to systematically
scan single parameters like the heating power or the beam
(spot) size at constant other parameters which is often
experimentally too costly.

4.1. Langevin Molecular Dynamics simulations

In an LMD simulation, the Langevin equations of motion for
the dust component

m
d�vi

dt
= �Fi + �f L

i − γm�vi + �ξi(t), i = 1 . . . N, (10)

for all dust grains i are integrated numerically. In these
equations, the first term on the right hand side results from
minus the gradient with respect to �ri of the Hamiltonian,
equation (3) (i.e. the forces due to external potentials and
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Figure 5. (a) Average particle velocity distribution function for a 2D cluster of 19 particles for three different values of the heating power.
The velocity components in x and y direction (grey and black dots) are plotted separately. For each case (unheated, medium and high
heating power) Gaussian fits (dashed lines) indicate only slight deviation from an ideal Maxwell distribution. (b) Velocity distributions for a
heated system (similar to (a)), but here the distribution is calculated for each particle independently. The small scatter of the data confirms
that all particles are heated equally. (c) Power spectrum of the velocity fluctuations. The spectrum of the unheated system is plotted in dark
grey. The spectra of the x and y component of a heated system are plotted (light grey and black). Note that both components are equally
heated and no artefacts from the scanning process can be found in the spectra. Reproduced with permission from [96], Copyright 2012 AIP
Publishing LLC.

inter-particle interactions that appear in Newton’s equations
of motion). The last two terms on the right hand side describe
the frequent collision of the dust grains with the neutral gas
background statistically by a viscous damping force, −γm�vi ,
and a random force �ξi(t). The random force has zero average
and can be modelled by a Gaussian probability distribution
with correlation function〈

ξi,α(t)ξj,β(t ′)
〉 = 2γmkBT δi,j δα,βδ(t − t ′), (11)

where i, j are particle indices and α, β ∈ {1, 2} indicate the
spatial components of the random force vector. The amplitude
of this force depends on the temperature kBT as well as
on the friction coefficient γ via the fluctuation-dissipation
theorem (11).

The dust–dust interaction is described by a Yukawa
potential, equation (2). In experiments on 2D clusters, the
strong vertical confinement in the plasma sheath allows the
formation of monolayer clusters. Therefore, the system is
treated strictly 2D in the simulation.

The effect of the heating lasers on each particle is given by
the second term on the rhs in equation (10), �f L

i = ∑NL

l=1
�f L
il ,

which is composed of separate contributions of all NL laser
beams. The dominating effect of every single heating laser
beam (index l) on particle ‘i’ is a momentum transfer by the
radiation pressure which is described by the force �f L

il . If the
laser spot hits a dust grain, this particle is accelerated in beam
direction. The laser force

Fl = qopticn1

πr2
p Ilaser

c
= qopticn1

πr2
p

c

Plaser

2πσxσy

× exp

[
−�2

x

σ 2
x

− �2
y

σ 2
y

]
(12)

is proportional to laser intensity Ilaser at the particle position
(�x, �y) relative to the laser spot centre, the cross-section
of the dust particle πr2

p , the refractive index of the plasma
n1 surrounding the particle and a dimensionless quality factor
qoptic [159]. This factor describing the momentum transfer by
an incoming photon has the limiting values 1, if the particle
was a perfect absorber, and 2 for a perfectly reflecting flat disk

perpendicular to the beam. For a spherical particle reflecting,
absorbing and transmitting photons it is qoptic < 2. Typical
values of qoptic ≈ 1 are reported for melamine particles [159].
σx,y characterizes the extensions of the elliptical spot which
has an area of 2πσxσy .

As sketched in figure 4, the laser beams strike the
cluster from above the levitation plane with a low angle of
incidence. The out-of-plane component of the accelerating
force is considered to have no impact on the particles’ motion
due to the strong vertical confinement. However, the spot
profile is stretched in beam direction due to the relatively
small angle of incidence, α < 90◦. The laser force is time
and space dependent according to the experimentally chosen
scheme. The amplitude of the force depends on the particle’s
position inside the spot which is described by an anisotropic
Gaussian intensity profile. The force acting on a particle at
position {�x(t), �y(t)} = �r − �rl(t) away form the moving
spot centre is described by

�fl (�r, t) = P0

2πσxσy

· exp

[
−�2

x(t)

2σ 2
x

− �2
y(t)

2σ 2
y

]
�el, (13)

where �el is a unit vector in beam direction. Here, based
on equation (12), we have introduced dimensionless units
for all lengths and P0. The amplitude of the force P0 =
qopticn1πr2

p Plaser/c is determined by the laser power, the cross
section of the dust grain and its absorption and reflection
characteristics. Since only the in-plane component has an
effect on the particle’s motion, P0 is reduced by the factor
cos α where α is the angle of incidence. The trajectories of
the laser spot centres within the levitation plane are denoted
by �rl(t) = {xl(t), yl(t)} and depend on the heating scheme.

4.2. Comparison of different heating schemes

All investigated heating methods (a more extensive analysis
was reported in [157, 160]) use triangular signals to drive the
x- and y-oscillations of the lasers spots x(t) = x0 · triag(fxt),
y(t) = y0 · triag(fyt). Using a sinusoidal signal would cause
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Table 3. Parameters defining the pattern which is scanned by the
lasers. Since both beams are oriented in the ±x-direction for
method A-I, f‖ = fx in that case.

method A-I B

laser beams 2 4
frequency ratio pseudo-irrational random frequencies
f‖ 14.5623 Hz 50–300 Hz
f⊥ 9.0 Hz 15–60 Hz

an increased intensity at the borders of the scanned area. The
heating methods differ in the scanning frequencies f . These
frequencies are fixed for the heating method A-I. Method A-I
uses the same frequencies for both laser and a pseudo-irrational
ratio fx/fy . For method B, the scanning frequencies are
dynamically changed each time a laser spot reaches the border
of the scanned area. Hence, no pattern is repeated [96, 157].
added. The parameters of all heating methods are summarized
in table 3 and the scanned patterns are shown in figure 6.

For the simulation results presented in this review, we
used the following dimensionless units of length, time and
energy: r0 = [Q2

d/(4πε0 mω2
0)]

1/3, t0 = ω−1
0 , and E0 =

[Q4
d mω2

0/(4πε0)
2]1/3. For the numerical integration of

the stochastic differential equations, we used an integration
scheme described by Mannella et al that can be considered
as an extension of the ‘leap frog’ scheme [161]. For details
concerning the simulations, we refer the reader to [157, 158].
(This scheme can also be easily generalized to incorporate
homogeneous magnetic fields of arbitrary strength [162–164]).

As a first result, our LMD simulations confirmed the
importance of randomly changing the scanner frequency.
Especially rational scanning frequency ratios fx/fy which
result in a closed scanning pattern prove to be problematic.
A second result is the confirmation of the excellent heating
qualities (with respect to homogeneity of the heating) of the
random frequency method B [157]. While constant scanning
frequencies and combinations of them appear as peaks in the
power spectral density (PSD) of the particle velocities for the
method A-I, this artefact is removed by randomly changing
the scanning frequencies, see figure 7 and figure 5(c). The
PSD further discloses that effective energy transfer from x-
to y-motion works for low frequencies, f � 8 Hz, only.
The pseudo-irrational frequency method A-I shifts the entire
spectrum of the motion in x-direction to higher energies but
also induces several peaks at the scanner frequencies and
combinations thereof, figure 7(a).

Both experiment, figure 5(c), and LMD simulation,
figure 7 (bottom), show that the random frequency method B is
well suited as a thermostat for the 2D dust system. The energy
input is homogeneous over the entire frequency spectrum. It
is also homogeneous in space and the Maxwellian shape of
the velocity profile is conserved in both x- and y-direction.
Moreover, the random frequency method B is very robust
against changes in the laser parameters [157]. The temperature
increase �T (i.e. the heating effect) is reduced when the typical
scanning frequency f̄ of the laser beams is increased according
to �T ∝ f̄ −1. However, in order to achieve a thermal
heating effect, each particle should frequently be affected by

a laser spot. This condition is violated for f̄ below the trap
frequency ω0. Therefore, scanning frequencies of the order of
a few ω0 are advantageous [157].

4.3. Analytical estimate for the temperature increase

We now derive an analytical approximation for the heating
power as a function of the laser parameters: the force amplitude
P0, spot size σx,y , size of the scanned array 2X × 2Y and
average spot velocity. The spot velocity is connected to
the scanning frequencies, fl,x, fl,y , via vl,x = 4Xfl,x and
vl,y = 4Yfl,y . A similar analytical derivation of the heating
effect was performed by Wolter and Melzer for a setup with
one laser spot that was rapidly moved to one position, remained
there for a dwell time of a few microseconds and was then
moved to the next position [92].

Here we extend this model to a continuously moving laser
spot corresponding as closely as possible to the experimental
heating method by Schablinski et al that is discussed in
section 5. For simplicity, the momentum transfer is computed
in one direction only. Since the velocity of the dust is small
compared to the velocity of the moving laser spot, the particle’s
displacement during an acceleration event can be neglected.
The time-dependent force acting on a particle when a spot
passes with distance �y0 in y-direction is

F(t ′) = ±P0
1√
2π

e− t ′2
2τ2

· 1√
2π

1

σxσy

exp

{
−1

2

[
�y2

0

σ 2
y

− τ 2
�y2

0v2
y

σ 4
y

]}
︸ ︷︷ ︸

:=�

, (14)

where we introduced the time scale of the passing event
1
τ 2 = v2

l,x

σ 2
x

+
v2

l,y

σ 2
y
, and the shifted time t ′ = t +τ 2 �y0vl,y

σ 2
y

−t0. Here,

t0 is the time when the spot has the smallest distance �y0 in
y-direction and we introduced the time-independent geometry
factor �. The total momentum transfer to the particle during
this laser hit follows from equation (14)

�p =
∫ ∞

−∞
dt ′ F(t ′) = ±P0� · τ , (15)

and is cancelled, on average, by the momentum transfer from
the opposing laser beam. To calculate the average energy
transfer, we need to average the squared geometry factor �2

over all possible passing distances �y0. Assuming that the
particle at (xp, yp) does not come too close to the boundary,
the integration limits can be extended to infinity, with the result

〈
�2

〉
y

≈ 1

2Y
· 1

2
√

π
· 1

σxσy

· 1

vl,x

· 1

τ
. (16)

Each time the laser crosses the levitation plane in x direction,
it passes the particle position once. Then, the ‘passing rate’ χ

is given by the inverse crossing time in x direction as χ = vl,x

2X
.

The energy change of a particle with velocity v during
a single laser–particle interaction event is (neglecting the
deceleration due to friction during the kick),

�E = E′ − E = v�p +
�p2

2m
, (17)
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Figure 6. Trajectories of the laser spots (red/green: ±x-direction) for two of the investigated heating methods. (a) Method A-I uses a
pseudo-irrational frequency ratio. (b) Using method B, a new scanning frequency is randomly chosen each time a laser spot reaches the
border. Here, the two additional spots of the laser oriented in the ±y-direction are omitted, for the sake of clarity.

where the momentum transfer �p is given by equation (15).
From this the average energy transfer is obtained using
equation (16),

〈�E〉 = 1

2m
P 2

0 �2 · τ 2, (18)

which depends on the passing distance �y0 via �. Then, the
average energy transfer per time follows from averaging over
�y0, multiplying by χ and using equation (16),〈

�E

�t

〉
= 1

2m
· 1

2
√

π
· P 2

0 · 1

4XY
· 1

σxσy

· τeff , (19)

where we also took into account that the laser spot velocity
components vx , vy vary in the experiment by computing an
effective time scale τeff by averaging τ(vl,x, vl,y) = (v2

l,x/σ
2
x +

v2
l,y/σ

2
y )−1/2 over all possible spot velocities vl,x ∈ [vmin

x , vmax
x ]

and vl,y ∈ [vmin
y , vmax

y ]12.
From the result (19), we can now calculate the equilibrium

temperature Teq in the Langevin MD model which follows from
the balance between laser input power Plaser, the power input
by the stochastic force, Pstochastic, and the power loss due to
friction, Pfriction,

Plaser + Pstochastic + Pfriction = 0. (20)

Assuming a 1D Maxwellian particle velocity distribution with
temperature Teq,

p(v) =
√

m

2πkBTeq
e− mv2

2kBTeq , (21)

and the velocity change due to friction, v̇ = −γ v, where γ is
the friction coefficient, we obtain

Pfriction =
〈

d

dt

m

2
v2

〉
= −mγ

〈
v2

〉 = −γ kBTeq. (22)

On the other hand, in an equilibrium system without laser
heating at the temperature T0 of the neutral gas, the power
loss due to friction is be compensated by Pstochastic = γ kBT0.
12 The integral in the expression for the effective time scale can be solved
using Mathematica.

Using equation (20) and the power input by the laser from
equation (19) multiplied by 2 to take into account the pair
of lasers in each direction, we obtain our final result for the
equilibrium kinetic temperature of the dust particles

Teq = T0 +

√
π3

2mγkB
· I 2

0 · σxσy

XY
· τeff , (23)

where we introduced the laser intensity according to I0 =
P0/(2π σxσy). It is interesting to note the dependence on
the relevant system parameters: Teq grows proportional to the
square of the laser intensity, in agreement with the findings
of Wolter and Melzer [92], and the ratio of spot area to
scan area and inverse proportional to the neutral gas friction.
These qualitative trends are also seen in the experiments. The
time scale τeff introduces additional slightly more complex
dependencies13.

Despite the simplicity of the model, the accuracy of the
result (23) is very good, as is confirmed by comparison to LMD
simulations, see table 4. The temperature is overestimated
slightly, and the accuracy improves with γ from about 15%
to better than 10%. For very small spot sizes and low friction
(not shown) the agreement is even better than 5%. For very
large spot sizes, σx � 0.7 in dimensionless units, the formula
becomes less accurate. Then, most particles are close to
the border of the scanned area compared to the spot width,
violating the assumption of equation (16). Moreover, τeff

becomes large in this case and the deceleration due to friction
as well as the interaction with other particles during the hitting
event should not be neglected.

Our result is not only in very good agreement with the
simulations, it is also useful for characterizing the heating in
the experiment. In fact, the spot size used in table 4 is typical

13 τeff is inversely proportional to the spot velocity, when both vl,x and
vl,y intervals are scaled by the same factor. Increasing the laser scanned
area has the side effect of decreasing τeff via the faster spot velocity at
constant scanner frequencies. Therefore, the temperature increaes scales as
�T = Teq − T0 ∝ X−3 with the side length of the scanned area. At constant
aspect ratio σx : σy , the passing time τeff scales linearly with σx .
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Figure 7. PSD of the dust velocity averaged over all particles of a
Yukawa cluster with N = 38 particles with different heating
methods (trap frequency ω0 = 5.5 s−1). Top: method A-I uses one
pair of laser beams in the ±x-direction and a pseudo-irrational
scanning frequency ratio fx/fy . Bottom: heating method B uses
two pairs of laser beams to accelerate the particles in both ±x- and
±y-directions. The scanning frequencies are randomly chosen each
time the border of the scanned area is reached. The spectra for vx

and vy coincide, here. Only this method conserves the shape of the
PSD by shifting the entire spectrum to higher energies.

Table 4. Comparison of equation (23) and results from a LMD
simulation. Deviations refer to the value of Gamma (lines marked γ .
The second lines show the associated temperature T ). For smaller
spots (not listed), the agreement is even better. Parameters: particle
number N = 25, screening parameter κ = 1, coupling parameter
without laser heating �0 = 200, trap frequency ω0 = 5.5 Hz,
dimensionless laser power F0 = 10, scanned area X = Y = 3.5.

γ Formula Simulation Deviation

σx = 0.50, σy = 0.10
0.67 53.23 63.17 15.7% �

18.79 × 10−3 15.83 × 10−3 T
1.00 70.24 80.26 12.5% �

14.24 × 10−3 12.46 × 10−3 T
1.33 83.71 94.52 11.4% �

11.95 × 10−3 10.58 × 10−3 T
1.66 94.65 104.7 9.60% �

10.56 × 10−3 9.550 × 10−3 T
2.00 104.0 114.5 9.22% �

9.619 × 10−3 8.732 × 10−3 T
2.33 111.6 121.5 8.15% �

8.965 × 10−3 8.234 × 10−3 T
2.66 118.0 127.7 7.57% �

8.473 × 10−3 7.831 × 10−3 T

for the experiments. Assuming that the visible spot width
is �vis = 3σ , our formula suggests a coupling strength of
�form = 80 which is in good agreement with the measured
temperature T = 3.5 eV corresponding to �exp = 63 for
the maximum laser power used in et al [96]. However, that

result has to be understood as a rough approximation, since
parameters like the spot size, the trap frequency, and laser
power losses in the optical setup each have an uncertainty of
several percent in the experiment.

5. Experimental results for 2D dusty plasmas

We now turn to the experiments on laser heating. First,
we start with 2D systems and continue, in section 6, with
experiments with finite 3D dust cluster. Before presenting
our experimental results for finite 2D dust clusters we briefly
summarize previous work on extended systems.

5.1. Experimental results for extended systems

In many experiments in extended 2D systems the Lissajous
heating scheme A-I (see section 4.2) has been applied since
it allows one to densely scan (and heat) a well defined dust
area. This technique has been used successfully to drive
2D extended dust systems into the liquid state [94, 165, 166].
There, it has been demonstrated that the defect concentration in
steady-state laser-heating experiments exhibits an Arrhenius-
type dependence on the kinetic temperature [165]. Moreover,
these experiment suggest a grain-boundary-induced melting
scenario which is also observed in non-equilibrium heating
experiments, e.g. by changing the gas pressure of the plasma
discharge [17].

Further, experiments on heat transport and particle
transport properties, such as diffusion and viscosity, of laser-
heated dust layers have been performed, see e.g. [89, 94,
167–170]. From these, fundamental transport parameters like
the thermal diffusivity of the dust component, as well as
diffusion constants, �-dependent viscosities and anomalous
diffusion properties have been identified and measured.
These experiments have yielded important information on the
application of laser–dust interaction methods in the field of
dusty plasmas which are of high relevance also for strongly
correlated small dust clusters at finite temperature.

5.2. Experimental results for 2D clusters

The remainder of this section will concentrate on finite 2D
clusters and their thermodynamic properties. Especially the
phase transition of these small systems is of interest as it
should significantly depend on the cluster size. The following
experiments use the isotropic heating method B of Schablinski
et al [96, 157], which has been introduced in section 4.2.
As shown there, the laser heating effectively provides a heat
bath for the dust particles assuring that the dust subsystem
is in thermodynamic equilibrium. Changing the laser power
will result in a different temperature of this thermostat. In
the experiment, for each temperature, long time series are
recorded to obtain the trajectories of all particles. Examples
of such particle trajectories are shown for low, medium and
high temperature in figure 8(a). For low temperature the
particles are well localized and only a slight angular rotation
is observed. At medium temperature the particles are less
localized in angular direction. Finally, at high temperatures
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Figure 8. Diffusion constant as a function of temperature for finite 2D clusters. (a) Above a critical temperature the diffusion constant
increases linearly with temperature. The insets show trajectories of a dust cluster with N = 26 particles at different temperatures. (b)
Diffusion constant for two different dust clusters. The N = 19 cluster with its (1-6-12) shell occupation is highly symmetric and its critical
temperature is significantly higher than that of the less symmetric N = 20 cluster. Part (a) reproduced with permission from [142]),
Copyright 2013 The American Physical Society. Part (b) reproduced with permission from [171], Copyright 2012 The American Physical
Society.

(high laser power), the radial correlations vanish as well. Thus,
we confirm that the melting process has two phases: first,
a loss of angular correlation and, second, a loss of radial
correlation [51, 171].

To determine the melting temperature several methods
have been proposed (see [172] and references therein).
Unfortunately most of them either fail for small clusters or
are experimentally not feasible since they require extremely
long time series in order to achieve sufficient statistics, see
section 2.3. Therefore, recently different methods have been
applied which were introduced in sections 2.4, 2.5: The first
is the INM analysis. This method computes the frequencies
of the eigenmodes of a cluster from the eigenvalues of the
dynamical matrix, see section 2.5. The results of such an INM-
analysis are plotted in figure 8. The plots show that, above a
critical temperature, the diffusion constant increases linearly
with temperature. A freezing temperature can be derived
approximately from the point where D vanishes [144]. Thus
one can estimate a melting temperature TM by extrapolating
the D(T ) curve toward zero. Especially in figure 8(b) the
comparison of a highly symmetric cluster (N = 19) and a
cluster with low symmetry (N = 20) reveals that the melting
temperature of the symmetric cluster is significantly higher
(T 19

M ≈ 9.000 K, T 20
M ≈ 2.000 K). A systematic investigation

of melting temperatures as a function of particle number [142]
has shown that symmetry has a mayor influence on melting
temperatures of finite systems, confirming earlier theoretical
predictions [51, 125].

The above results show that the INM analysis is sensitive
to the cluster symmetry. However, it does not resolve different
melting processes such as inter-shell and intra-shell melting.
(For example, it is well known [51] that the above two clusters
have angular melting temperatures that differ by many orders
of magnitude but that their radial melting temperatures are
comparable.) For this reason, we also consider the C2P

correlation function (see section 2.4) for the experimental
cluster of 19 particles. Figure 9(a) shows a highly ordered
structure of the weakly manipulated cluster. The inner shell is
occupied by six particles. Intra-shell neighbours are found
under angles of ϕ = 60◦, 120◦ and 180◦, as is clearly
seen by the peaks at these angles and a radius rII ≈ 1mm,
corresponding to the inner shell. The outer shell is occupied
by 12 particles and the angular order with respect to the inner
shell is fixed. Distinct peaks are visible at multiples of ϕ =
30◦. When the laser power is increased to a moderate value
(see figure 9(b)), clear intra-shell and inter-shell correlations
persist. However, inter-shell rotation (‘angular melting’) has
started, as the peaks at the outer radius are no longer fully
separated. At the inner shell radius, weak peaks at ϕ ≈ 103◦

and ≈ 154◦ (arrows in figure 9(b)) indicate the occurrence
of configurations with seven particles on the inner shell. The
appearance of this metastable configuration indicates the onset
of radial melting. Finally, at high laser power (figure 9(c)),
the correlations between inner and outer shell have vanished
almost completely. At this heating power, the frequent particle
transitions between the two shells give rise to a finite density
in the region between these shells.

Thus the C2P correlation function fully confirmed the
stability of this ‘magic number’ cluster against inter-shell
rotation. Yet a complete quantitative analysis of the different
melting temperatures and their dependence on the particle
number is still open.

6. Experimental results for 3D clusters

3D dust clusters are formed in parallel plate radio-frequency
(rf, 13.56 MHz) discharges, see figure 10 and e.g. [55, 120,
173, 174]. The discharges are typically operated in argon at
gas pressures between 1 and 100 Pa and at rf powers between
1 and 10 W. The dust grains trapped in the discharge generally
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Figure 9. (a)–(c) C2P correlation function for a laser heated cluster of N = 19 particles. The low laser power corresponds to T =2.800 K,
the moderate (high) power to T =17.000 K (T = 34.000 K). The first radial coordinate is averaged over the inner shell (arrow). (d) Radial
pair distribution function for all three laser powers. Note that it does not distinguish between different shells. The inset shows the cluster
configuration at the lowest laser power.

Z

XY

Figure 10. Sketch of the experimental setup to investigate laser
heated 3D dust clusters. The particles are trapped in the cubic glass
box and are illuminated by two Nd : YAG lasers from two sides and
heated by two diode lasers from opposite directions. The three
orthogonal high-speed cameras allow to trace the full 3D particle
motion individually. From [175].

are monodisperse plastic microspheres with diameters chosen
between 3 and 10 µm. These 3D clusters are trapped inside
a cubic glass cuvette placed onto the lower electrode. The
glass box provides inward electric forces on the negative dust
grains. To compensate the gravitational force an upward
thermophoretic force is applied by heating the lower electrode.
The combination of all forces provides a 3D harmonic
confinement [106]. There, the particles arrange in nested
spherical shells forming Yukawa balls or Yukawa clusters
[55, 120, 176], see section 2.2.

In the experiments described here, the particles are
illuminated by low-intensity laser beams and the scattered light

is recorded with high-speed video cameras at frame rates of 50
to 200 frames per second (fps), typically [97, 120, 176, 177].
For the observation of the 3D clusters a stereoscopic camera
setup [120] is used where the particles are observed from
three orthogonal directions. This setup allows to measure
and reconstruct the full 3D trajectories of clusters with up to
N = 100 particles with high temporal resolution [120, 178].
Consequently, the dynamical properties of the dust cluster can
be followed for all particles individually. To realize a heating
process for these 3D clusters a simpler approach than for the
2D case had to be chosen due to experimental constrains.
The transfer of the elaborate heating schemes used for the
2D clusters (section 5.1) to the 3D case would require six
beams, two of which would be blocked by the electrodes.
Here, only two additional opposing laser beams are oriented
parallel to the electrode and are randomly swept over the
cross section of the cluster with a dwell time of τ = 0.1 s
at each position [97, 175, 177]. The two laser beams at 660 nm
wavelength are operated with up to 1 W output power. The
random ‘kicks’ to the particles by the radiation pressure mimic
a heating process for these 3D clusters.

As a consequence, the resulting velocity distribution of
the particles in the cluster is only near-Maxwellian, with an
overpopulation of ‘cold’ dust particles [97]. Also the heating is
more effective in the direction of the beams resulting in higher
temperatures along this axis. Consequently, this laser-heating
scenario of 3D clusters does not provide a true thermodynamic
heating, yet. Nevertheless, from the velocity distributions
reasonable kinetic temperatures kTα = m〈v2

α〉 with α = x, y, z

can be assigned and values of the order of a few times
104 K (few eV) have been realized by this laser heating
setup.
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Figure 11. Trajectories of a N = 60 particle cluster recorded over a time span of about 10 s. (a) Without laser excitation, (b) with 250 mW
laser power. (c) Equilibrium particle positions in cylindrical coordinates ρ =

√
x2 + y2 and z for the unheated case (a). From [175].

Figure 12. C2P correlation functions for the N = 60 cluster, (a) without laser heating (� = 850), (b) for a laser heating power of 100 mW
(� = 550) and (c) 300 mW (� = 250). (d) Pair distribution function. The smoothening of the curve with decreasing � indicates the loss of
order but, in contrast to the C2P correlation function in (a)–(c), the pair distribution function cannot distinguish intra-shell from inter-shell
correlations. (The zero line is shifted for � = 550 and � = 250, for sake of clarity).

Here, as an example, the heating and melting of a 3D
cluster with N = 60 particles is demonstrated14 using the
pair of opposing heating laser beams. The Yukawa ball is
spherical in shape and consists of two shells, see figure 11. By
increasing the laser power, the amount of heating is increased
and melting is achieved. For low laser heating power the
cluster remains in a solid-like arrangement, as seen from
the particle trajectories. Stronger random particle motion is
excited at higher laser power where then frequent intra-shell
and inter-shell particle exchanges are seen. Hence, the cluster
is apparently driven into the liquid regime. The change of
structural and thermodynamic properties that is induced by

14 This cluster is formed from 4.86 µm particles at a gas pressure of 6.4 Pa and
at a rf power of 1.3 W.

the lasers is illustrated in figure 12(d). There we show the
pair distribution function g(rij ) for three different heating
powers. The differences in g(rij ) between the three heating
powers are only small. All three curves show a pronounced
first-neighbour maximum at rij ≈ 0.6 mm, a shoulder at
rij ≈ 1.2 mm corresponding to second neighbours and a decay
to zero. While the curves for � = 250 and � = 550 appear
smooth, a substructure is visible at high coupling, � = 850.
The reason for the weak sensitivity is that g(rij ) does not
distinguish between intra-shell neighbours and neighbours on
different shells. This leads to a smeared out structure of g(rij ).

The loss of order is reflected more clearly in the C2P
correlation function. As for the 2D case, it allows to
quantitatively assess the melting transition(s) for these 3D
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clusters. This is shown in figure 12 for the same cluster
(N = 60) with or without laser heating. As for the 2D case,
one sees pronounced peaks at distinct angles ϕ and radii rII

at low heating powers and subsequent loss of correlations for
increased heating (reduced �). Also, in these 3D systems,
laser heating provides a near-equilibrium heating scenario. A
two-step melting (orientational melting before radial melting)
which is expected for finite clusters [51, 52, 126, 179] is
experimentally identified also for 3D clusters [97].

Finally, as another example of a liquid state property, the
diffusion constant D, equation (8), has been derived from the
experimental 3D particle trajectories of the N = 60 cluster,
based on the analysis of unstable INMs [142, 171, 177], see
section 2.5. The so obtained diffusion coefficient is shown
in figure 13. For comparison, also the diffusion constants of
clusters of different sizes are added [177]. A linear relationship
between D and temperature is found for all studied clusters
where D reaches values of about D = 1.3 × 10−6 m2/s
at the highest dust temperatures, T ≈ 4 × 104 K. The
values for the diffusion coefficient are decisively larger than
in the 2D case [142, 171]. A reason for this is the higher
dimensionality of the system that allows more paths to change
configurations15.

As discussed in section 5.2, from the diffusion constant an
approximate melting temperature can be extrapolated which is
then found to be TM ≈ 2010 K for N = 60. Interestingly,
this is smaller than the kinetic temperature of this cluster
even in the absence of heating which is Tkin = 2930 K [177].
This relatively high kinetic temperature, even in the unheated
case, is explained by additional heating processes by the
wake-field instability caused by streaming ions in the plasma
sheath [180–182].

7. Discussion and outlook

7.1. Discussion of the results

In this review, we discussed the various opportunities provided
by laser beams as manipulation tools for dusty plasmas. We
focused on the use of lasers as heating instruments for dust
particles. As discussed in the introduction, various further
uses, like the excitation of shear stress [88, 89] or of the rotation
of a cluster shell [53], are possible as well, but this goes beyond
the scope of this review. The availability of reliable heating
tools is essential for the experimental investigation of phase
transitions and instabilities in dust crystals. The enhanced
manipulation setup for finite 2D dust clusters, presented in
section 3.1, has proven to be usable as a tunable thermostat
in both experiment and LMD simulation. The experiments
confirmed that the used laser heating scheme provides a
homogeneous power input over the entire cluster and over
all frequencies. As desirable for a true thermal heating, the
isotropy and the Maxwellian shape of the velocity distribution
are preserved to very high accuracy. Various laser scanning
concepts have been studied in the simulations allowing to
predict the optimal parameters for the experiments.
15 From the relation of the diffusion coefficient to the mean squared
displacements, equation (5), one would expect a dimensionality-related
increase by a factor 3/2 which, however, is not suffcient to explain the observed
difference of the experimental values. This problem is still under investigation.

Figure 13. Diffusion coefficient D(T ) as a function of temperature
for Yukawa balls of different size determined from an INM analysis.
The dashed line corresponds to a linear fit to the diffusion
coefficients for all clusters. Reproduced with permission
from [177], Copyright 2013 American Physical Society.

The laser heating method was used to perform temperature
scans of small 2D dust clusters with different particle numbers.
The INM analysis allowed us to calculate the diffusion constant
and, by this, to determine an approximate melting temperature.
This melting temperature is found to be crucially dependent
on the exact particle number, as a consequence of different
cluster symmetries. At the same time the INM analysis does
not allow to discriminate between intra-shell and inter-shell
melting. As another more sensitive quantity we studied the
C2P correlation function which displays both intra-shell and
inter-shell correlation.

The heating method for 3D dust clusters has to work
with two opposing laser beams, due to the required space for
diagnostics and illumination of the cluster. Hence, the heating
quality with respect to the isotropy and the Maxwellian shape
of the velocity distribution is not as perfect as for 2D clusters.
Nevertheless, as in 2D, the quality of this heating technique
is sufficient to manipulate the dust temperature (and hence the
coupling strength) in a controlled manner, without affecting
the plasma parameters. Due to the spherical symmetry of 3D
Yukawa balls, structural parameters which take into account
this symmetry are required in order to investigate the structure
and the melting behaviour of these systems. The most sensitive
quantity turned out to be the C2P correlation function which
displays both intra-shell and inter-shell correlation and allows
us to distinguish solid clusters with a highly ordered structure
from molten clusters. While important aspects of the melting
behaviour in 3D are now understood, accurate data for the
phase diagram and its the particle number dependence are
still missing. The presented experimental tool–laser heating–,
combined with the diagnostic based on the C2P correlation
function should allow to study these questions in detail in the
near future.
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7.2. Extension to transport properties of inhomogeneous
strongly coupled systems

Both experiments and LMD simulations have shown that an
appropriate heating scheme allows for a homogeneous heating
of the entire 2D cluster [96, 157]. However, this heating
method can also be used to heat only a selected spatial region.
As long as the heated region is larger than the laser spot size,
local heating is simply realized by restricting the area which
is scanned by the laser spots. Kudelis et al suggested an
experiment where only the central region of a 2D Yukawa
cluster is heated by four randomly moving laser spots and
performed LMD simulations for this scenario [158]. The
thermal conductivity associated with the radial temperature
profile, see figure 14 (bottom), is found to be constant over a
wide range in coupling strengths, including the phase transition
between solid and liquid [158]. This result is in good
agreement with experimental data for the heat transport in an
extended 2D dust crystal by Nosenko et al [94]. The upper part
of figure 14 shows the spatial particle density of the Yukawa
cluster that is heated in the inner region. While a pronounced
shell structure is found at the cold outer region, the centre of
the cluster is molten.

It remains an interesting task to verify these predictions
in an experiment and, thus, employ laser heating for the
measurement of heat transport in strongly correlated finite
dusty plasmas. Another interesting task is to study the
influence of an electric or magnetic field on the transport
coefficients.

7.3. Control of time-dependent processes in complex plasmas

The applications discussed so far all considered stationary
states. However, the laser heating method also allows for the
study of transient, time-dependent processes. Compared to
the relatively slow time scale of the heavy dust particles, the
power input can be turned on and off practically immediately
by switching on an off the external laser source. A possible
application is a temperature quench during which the system is
abruptly cooled (or heated). This allows, for example, to study
the time-dependent relaxation from a fluid into a crystalline
state. Alternatively, quenching of a dust crystal was achieved
by changing the properties of the ambient plasma, e.g. via a
sinusoidal modulation of the dc self-bias of the lower, powered
electrode [183], or by applying shock waves induced via a wire
placed beneath the crystal [184, 185]. However, this alters the
plasma environment and does not allow to vary only � by a
single parameter, namely the dust kinetic temperature, like in
the laser experiments presented in this review.

Feng et al [166] laser-heated, and subsequently rapidly
cooled, a 2D dust crystal that initially was arranged in a
hexagonal lattice. During rapid heating, the dust arrangement
remained in a solid structure at temperatures above the melting
point, demonstrating solid superheating. The relaxation of
small, 2D dust clusters was investigated by means of lasers
by Lisin et al [186]. There and in [184], the cooling rate
for the crystallization of a 2D dust system was found to
be close to the friction coefficient, at moderate damping
rates. A different behaviour was found in laser-mediated

Figure 14. Top: spatial density of a Yukawa cluster with N = 200
particles. Four randomly moving laser spots heat the inner square
marked by the dashed rectangle. Bottom: radial temperature profile
and the fit by the analytical model presented in [158]. The
temperature towards the border approaches the equilibrium
temperature Teq of the unheated cluster.

recrystallization experiments with small 3D dust clouds [187]
where the cooling rate was found to be decisively lower than
the friction coefficient for moderate damping (i.e. ω0 ≈ γ ),
confirming previous simulations [188]. However, further
investigations are required to study the shell formation process
in larger dust clouds with several thousand particles and a
multi-shell structure. A possible approach to circumvent the
obstacle of high particle numbers could be the use of tracer
particles to artificially reduce the particle density [189, 190].

Furthermore, since dust clusters are, at low neutral gas
pressure, strongly influenced by wake effects due to fast
streaming ions and thus exhibit attractive forces leading to
particle chain formation [63, 64], it would be tempting to apply
a laser-induced torque to the dust system in order to study the
energetic landscape by screwing the aligned dust ensemble.

A particularly interesting application would be a
temperature quench in the presence of a strong magnetic field.
Ott et al found in MD simulations that a magnetic field may
prevent crystallization. This is unexpected since, due to the
Bohr von Leeuwen theorem, a magnetic field should not affect
the static properties of a classical system. The reason for the
observed effect is that a strong magnetic field may prevent
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conversion of potential energy into kinetic energy creating a
bottleneck for a phase transition. Above a critical magnetic
field strength, the relaxation time τr for the crystallization
increases exponentially [191]. It would be very interesting
to verify these simulation results in a laser heating experiment.
So far magnetizing dust particles in an experiment has not
been possible which is due to the low specific charge Qd/m of
the dust grains. An alternative way to effectively ‘magnetize’
the dust component is to put the cluster into rotation via a
rotation of the neutral gas [192]. The Coriolis force then has
the same functional form, �FC ∝ �v × �ω, as the Lorentz force
and acts as a ‘pseudo-magnetic’ field (Larmor’s theorem). This
idea has in fact been realized in dusty plasma experiments. It
was shown that important properties such as collective modes
of magnetized strongly correlated plasmas can be accurately
reproduced [193–195]. In combination with the laser heating
(or cooling) method presented in this paper, this technique
should allow to perform temperature quenches in experiments
with finite dust clusters and to investigate the influence of the
magnetization on the relaxation time for crystallization.

This outlines just a few possible further directions of laser
heating of strongly correlated finite dust clusters. Besides
thermodynamic properties which were in the focus of this
article, an experimental analysis of time dependent processes
is now within reach. The relevance of correlation effects in
many fields of physics should make such studies interesting
also beyond the field of dusty plasmas.
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and Bonitz M 2008 Phys. Plasmas 15 073710
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