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An analysis of the structural properties of three-dimensional Coulomb clusters confined in a spherical
parabolic trap is presented. Based on extensive high-accuracy computer simulations the shell configurations
and energies for particle numbers in the range 60øNø160 are reported. Further, the intrashell symmetry and
the lowest metastable configurations are analyzed for small clusters and a different type of excited state that
does not involve a change of shell configuration is identified.
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Spatially confined charged particle systems have a num-
ber of unique properties not observed in conventional
quasineutral macroscopicplasmas of electrons and ions in
discharges or solids, electrons and holes in highly excited
semiconductors, and so on. With the help of confinement
potentials it has now become routine to trap, for long periods
of time, plasmas of a single chargesnonneutral plasmasd,
e.g., electrons and ions and even positrons in Paul and Pen-
ning traps f1–3g sfor an overview seef4gd, or colloidal
sdustyd plasmas in discharge chambersse.g.,f5gd. By varying
the confinement strength researchers have achieved liquid
behavior and even Coulomb crystallization of ionsf3,6g and
dust particlesf7,8g. These strong correlation phenomena are
of exceptional current interest in a large variety of fields
ranging from astrophysicssinterior of giant planetsd and
high-power laser compressed laboratory plasmas, to con-
densed matter and quantum dotsf9g, etc. CoulombsWignerd
crystals are expected to exist in many white dwarf stars.

A particular property of trapped smallsN&1000d clusters
in spherical traps is the occurrence of concentric shells with
characteristic occupation numbers, shell closures, and un-
usual stable “magic” configurations. Due to their close simi-
larity to nuclei, metal clusters, or atoms, these systems are
sometimes called “artificial atoms.” A significant number of
papers has been devoted to the exploration of the energeti-
cally lowest shell configurationsground stated and metastable
s“excited”d states of two-dimensionals2Dd artificial atoms
se.g.,f10–12g and references thereind.

On the other hand,three-dimensional spherical Coulomb
crystalss3D SCCsd have been observed in laboratory experi-
ments with ultracold ion plasmasf3,6g, and the interest in
them is now rapidly growingf13g after their prediction in
expanding laser-cooled neutral plasmasf14g and their experi-
mental creation in dusty plasmas as wellf15g. This raises a
question about theoretical results for the configurations of
spherical 3D Coulomb crystals, which is the subject of this
paper. These results are expected to be an important refer-
ence for the above experiments but also for other possible
candidates for 3D crystals, including semiconductor nano-
structures. It is natural to start with an analysis of the ground
state and lowest metastable states, deferring finite tempera-
ture and melting propertiesfe.g., f16gg and also deviations

from an isotropic Coulomb interaction to a subsequent study.
The theoretical analysis of 3D SCCs is much more in-

volved than in 2D and has so far mostly been restricted to
small cluster sizes with often conflicting resultsse.g.,
f17–19g and references thereind. Rafacet al. f18g, correcting
earlier results, identified the first shell closure atN=12 sthe
13th particle is the first to occupy a second shelld and pre-
sented detailed data, including ground state energies forN
ø27, but they missed the onset of the third shell, as did
Hasse and Avilovf17g. Tsuruta and Ichimaru extended the
table toN=59 f19g. The most extensive data, for up to a few
thousand particles, have been presented by Hasse and Avilov
f17g and has been a valuable reference for theoretical and
experimental groups. However, as our calculations show,
their tables contain excited states rather than the true ground
states forN=28–31, 44, 54 and practically for allN.63
sexcept forN=66d. Therefore, it is an important task to ob-
tain the correct ground state shell configurations and cluster
properties for particle numbers beyondN=60.

The reason for the computational difficulties is the exis-
tence of a large number of excitedsmetastabled states which
are energetically close to the ground state; with increasingN
this number grows exponentially whereas the energy differ-
ence rapidly vanishes. Calculations with a too low accuracy
will then frequently miss the correct ground state. Therefore,
we use an improved computational strategy which drastically
reduces the probability of such missesssee belowd.

Model: we consider N classical particles with equal
chargeq and massm interacting via the Coulomb force and
being confined in a 3D isotropic harmonic trap with fre-
quencyv with the Hamiltonian

HN = o
i=1

N
m

2
ṙ i

2 + o
i=1

N
m

2
v2r i

2 + o
i. j

N
q2

4p«ur i − r ju
. s1d

Despite its simplicity, the models1d captures the basic prop-
erties of a multitude of classical systems and serves as an
important reference point also for more complex 3D systems.
Below we will use dimensionless lengths and energies by
introducing the units r0=sq2/2p«mv2d1/3 and E0

=smv2q4/32p2«2d1/3, respectively.
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To find the ground and metastable states, we used classi-
cal molecular dynamicssMDd together with an optimized
version of the standard simulated annealing method. Starting
with a random initial configuration ofN particles, the system
is cooled continuously until all momenta are zero and the
particles settle in minima of the potential energy surface.
Depending on the particle number, the cooling down process
was repeated between several hundred and several thousand
times until every one of the computed low-energy states was
found more than a given number of timesstypically 10–100d
assuring a high probability that the ground state has been
found. Crucial for a high search efficiency is the use of an

optimized MD time stepsit has to be chosen not too small to
avoid trapping in local potential minimad. The results are
shown in Tables I and II.

Consider first the ground state shell configurations beyond
the previously reported resultsf18,19g ssee Table IId. Closure
of the second shell is observed twice: forN=57 f19g and 60.
Further, we have found the closure of the third shell to occur
at N=154; all larger clusters have at least four shellssin the
ground stated. The “noble-gas-like” closed shell clusters are
particularly stable, but a few others also have a compara-
tively high binding energysaddition energy changed D2sNd
=EsN+1d+EsN−1d−2EsNd. Tsuruta and Ichimaruf19g

TABLE I. Shell configurations, energy per particle for the lowest-lying statessfor the excited states the
energy difference with respect to the ground state is given in italicsd, mean radius of the outer shellr1,
symmetry parameterGM, Eq. s2d, and number of VoronoiM-polygonsNsMd in brackets. ForN=4, Ns3d
=4, and forN=5, Ns3d=2, Ns4d=3.

N Configuration E/N r1 G4 fNs4dg G5 fNs5dg G6 fNs6dg

2 s2d 0.750000 0.5000 – – –

3 s3d 1.310371 0.6609 – – –

4 s4d 1.785826 0.7715 – – –

5 s5d 2.245187 0.8651 1.000f3g – –

6 s6d 2.654039 0.9406 1.000f6g – –

7 s7d 3.064186 1.0106 1.000f5g 1.000f2g –

8 s8d 3.443409 1.0714 0.641f4g 0.821f4g –

9 s9d 3.809782 1.1269 0.965f3g 0.957f6g –

10 s10d
s9,1d

4.164990
0.021989

1.1783
1.2453

1.000f2g
0.965f3g

0.861f8g
0.957f6g

–

11 s11d
s10,1d

4.513275
0.009876

1.2265
1.2878

0.940f2g
1.000f2g

0.894f8g
0.861f8g

1.000f1g
–

12 s12d
s11,1d

4.838966
0.015345

1.2700
1.3286

–
0.938f2g

1.000f12g
0.895f8g

–
1.000f1g

13 s12,1d
s13d

5.166798
0.005061

1.3659
1.3130

–
1.000f1g

1.000f12g
0.894f10g

–
0.932f2g

14 s13,1d
s14d

5.485915
0.003501

1.4033
1.3527

–
1.000f1g

0.893f10g
0.938f12g

0.933f2g
1.000f2g

15 s14,1d
s15d

5.792094
0.009031

1.4383
1.3906

–
–

0.938f12g
0.885f12g

1.000f2g
0.963f3g

16 s15,1d
s16d
s16d

6.093421
0.012200
0.012635

1.4719
1.4266
1.4267

–
–
–

0.882f12g
0.897f12g
0.747f12g

0.962f3g
0.993f4g
0.884f4g

17 s16,1d
s16,1d
s17d

6.388610
0.000365
0.015766

1.5042
1.5042
1.4611

–
–
–

0.891f12g
0.746f12g
0.738f12g

0.993f4g
0.884f4g
0.810f5g

18 s17,1d
s18d

6.678830
0.018611

1.5353
1.4941

–
1.000f2g

0.738f12g
0.829f8g

0.810f5g
0.920f8g

19 s18,1d 6.964146 1.5654 1.000f2g 0.827f8g 0.920f8g
20 s19,1d

s18,2d
7.247181
0.004264

1.5946
1.6285

–
0.991f2g

0.838f12g
0.824f8g

0.918f7g
0.913f8g

21 s20,1d
s19,2d

7.522378
0.004668

1.6226
1.6557

–
–

0.792f12g
0.847f12g

0.917f8g
0.927f7g

22 s21,1d
s21,1d
s20,2d
s20,2d

7.795469
2.5·10−7

0.000976
0.001053

1.6499
1.6499
1.6821
1.6820

1.000f1g
1.000f1g

–
–

0.877f10g
0.859f10g
0.801f12g
0.763f12g

0.880f10g
0.866f10g
0.935f8g
0.909f8g
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found the stable clustersN=4,6,10,12,19,32,38,56. For
larger clusters the binding energy decreases, and the relative
differences rapidly decrease. We found the next particularly
stable ones to beN=81,94,103,116. The results are shown
in Fig. 1. The relative stability of these clusters is linked to a
particularly symmetric particle arrangement within the shells
which will be analyzed below.

The existence of the shell structure is a marked difference
from macroscopic Coulomb systemssN→`d and is, of
course, caused by the spherical confinement potential. With
increasingN the structure of a macroscopic system emerges
gradually ssee also Ref.f16gd. This can be seen from the
relative widthss̄m;sm/ rm of the mth shell ssm denotes the
variance of the shell radiusrmd. For example, forN=149
sstarting from the outermost shelld s̄1=0.0089, s̄2=0.035,
and s̄3=0.032, whereas forN=160 we obtains̄1=0.0091,
s̄2=0.033, ands̄3=0.0038. In both cases the outermost shell
is significantly narrower than the second one and this trend
becomes more pronounced asN increases. This is easy to
understand because the effect of the confinement is strongest
at the cluster boundary, i.e., in the outer shell, whereas the
inner shells are partially shielded from the trap potential by
the surrounding particle shells. In contrast, the behavior of
the inner shells is not that systematic: in one casesN=149d
the third shell is of similarsrelatived width as the second; in
the other casesN=160d the inner shell is much narrower. The
reason is symmetry effects which particularly strongly influ-
ence the width of the innermost shellsthe clusterN=160 has
a closed inner shell with 12 particles which is very narrowd.

In Table I we also provide the first excited states, which
correspond to metastable shell configurations that are differ-
ent from the ground state. While the overall trend is a rapid
decrease of the excitation energysenergy gap to the ground
stated with increasingN, some additional systematics is ob-
served. Clusters that open a new shell typically possess a
close metastable state. For example, forN=13 the relative
stability of the configurationshN,0j and hN−1,1j changes,
the latter becomes the ground state and the former the first
excited statessee Table Id. A similar trend is observed not
only when a new shell is opened but also when an additional
particle moves onto the inner shell between the stateshN1

−1,N2j and hN1,N2−1j. Away from these transition points
the energy difference increases and eventually another con-
figuration becomes the first excited state.

An interesting observation is that frequently simulations
yielding the same shell configuration resulted in different
total energies; see, e.g.,N=16,17,22 in Table I. The differ-

TABLE II. Ground state shell configurations, energy per particle
for the lowest-lying states, and mean shell radiir1,2,3 f20g.

N Configuration E/N r1 r2 r3

28 s25,3d 9.348368 1.8525 0.6889 –

29 s25,4d 9.595435 1.8992 0.7987 –

30 s26,4d 9.838965 1.9198 0.7961 –

31 s27,4d 10.079511 1.9399 0.7926 –

44 s36,8d 13.020078 2.2454 1.0845 –

54 s44,10d 15.085703 2.4186 1.1872 –

55 s43,12d 15.284703 2.4618 1.2772 –

56 s44,12d 15.482144 2.4743 1.2770 –

57 s45,12d 15.679350 2.4869 1.2763 –

58 s45,12,1d 15.875406 2.5126 1.3765 –

59 s46,12,1d 16.070103 2.5247 1.3764 –

60 s48,12d 16.263707 2.5236 1.2754 –

64 s49,14,1d 17.027289 2.6101 1.4478 –

65 s50,14,1d 17.215361 2.6212 1.4477 –

80 s60,19,1d 19.936690 2.8369 1.6002 –

84 s61,21,2d 20.632759 2.9064 1.7140 0.5426

94 s67,24,3d 22.325841 3.0347 1.8356 0.7001

95 s67,24,4d 22.491878 3.0522 1.8848 0.8089

96 s68,24,4d 22.657271 3.0606 1.8846 0.8083

97 s69,24,4d 22.822032 3.0687 1.8849 0.8095

98 s69,25,4d 22.986199 3.0864 1.9055 0.8081

99 s70,25,4d 23.149758 3.0945 1.9056 0.8071

100 s70,26,4d 23.312759 3.1117 1.9259 0.8055

101 s70,27,4d 23.475164 3.1291 1.9450 0.8028

103 s72,27,4d 23.798274 3.1451 1.9443 0.8017

105 s73,28,4d 24.120223 3.1696 1.9641 0.8020

107 s75,28,4d 24.439666 3.1850 1.9640 0.8011

109 s77,28,4d 24.757151 3.2005 1.9638 0.8006

111 s77,29,5d 25.072584 3.2322 2.0249 0.8968

113 s77,30,6d 25.385842 3.2637 2.0831 0.9640

115 s77,32,6d 25.697308 3.2949 2.1162 0.9630

117 s79,32,6d 26.007089 3.3094 2.1158 0.9622

119 s81,32,6d 26.315442 3.3237 2.1156 0.9624

121 s83,32,6d 26.622118 3.3379 2.1154 0.9614

123 s83,34,6d 26.927195 3.3672 2.1493 0.9625

125 s84,34,7d 27.230458 3.3884 2.1850 1.0340

128 s85,35,8d 27.682123 3.4235 2.2358 1.0922

130 s86,36,8d 27.981234 3.4445 2.2501 1.0917

133 s88,37,8d 28.427062 3.4718 2.2642 1.0912

135 s88,38,9d 28.722421 3.4992 2.3110 1.1436

137 s90,38,9d 29.016328 3.5119 2.3110 1.1440

139 s91,39,9d 29.308774 3.5316 2.3251 1.1430

141 s92,40,9d 29.599900 3.5514 2.3387 1.1417

143 s93,40,10d 29.889733 3.5707 2.3689 1.1932

145 s94,41,10d 30.178106 3.5898 2.3825 1.1920

147 s95,42,10d 30.465219 3.6087 2.3957 1.1923

149 s96,43,10d 30.750998 3.6273 2.4090 1.1926

151 s96,43,12d 31.035390 3.6524 2.4659 1.2814

TABLE II. sContinued.d

N Configuration E/N r1 r2 r3

153 s97,44,12d 31.318528 3.6708 2.4781 1.2811

154 s98,44,12d 31.459632 3.6768 2.4777 1.2810

155 s98,44,12,1d 31.600488 3.6887 2.5042 1.3846

156 s98,45,12,1d 31.741100 3.7006 2.5169 1.3839

158 s100,45,12,1d 32.021294 3.7122 2.5166 1.3834

160 s102,45,12,1d 32.300405 3.7238 2.5161 1.3833
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ences are much larger than the simulation error; moreover,
the energies are reproducible. The obvious explanation is that
the state of a cluster is not completely determined by its shell
configurationsas is the case in 2Dd. In addition, there exist
further excited states, i.e., a “fine structure,” which are due to
a different particle arrangement and symmetry within one
shell. To understand the differences in the structure of these
states with the same shell configuration we analyzed the in-
trashell symmetry by performing a Voronoi analysis, i.e., by
constructing polygons around a given particle formed by the
lines equally bisecting nearest-neighbor pairs on the shell
ssee the example ofN=17 shown in Fig. 2d. Interestingly, the
two states do not differ with respect to the number of poly-
gons of each kind on the outer shell: there areNs5d=12
pentagons andNs6d=4 hexagons. However, what is different
is the arrangement of the polygons: in one case, the four
hexagons form a perfect tetrahedronABCD and are sepa-
rated from each other by pentagonsfsee Fig. 2sadg; in the
other two pairs of hexagons touchfsee Fig. 2sbdg, and the

tetrahedron is distorted, as shown in Fig. 2scd. Two edges
remain practically constantsAB<CD<1.63d, but the edge
AB rotates with respect to the first case by an angle of 34°
resulting in a reduction of edgesBC and AD to about 1.24
while AC and BD increase to 1.94. From this we conclude
that of two states the one with the more symmetric arrange-
ment of the Voronoi polygons, i.e., Fig. 2sad, has the lower
energy. To quantify this topological criterion, we introduce
the Voronoi symmetry parameter

GM =
1

NM
o
j=1

NM 1

M
Uo

k=1

M

eiMu jkU , s2d

whereNM denotes the number of all particlesj in the shell,
each of which is surrounded by a Voronoi polygon of order
M sM nearest neighborsd, andu jk is the angle between thej th
particle and itskth nearest neighbor. A valueG5=1 sG6=1d
means that all pentagonsshexagonsd are perfect; the magni-
tude of the reduction ofGM below 1 measures their distor-
tion. Inspection of the values ofGM for the two h16,1j con-
figurations for N=17 sTable Id reveals that the state with
lower energy has higher values for bothG5 andG6 than the
second, confirming our observation above. This result is veri-
fied for all otherN sof course it applies only to states with the
same shell configurationd.

Having obtained withGM a suitable symmetry measure
that is sensitive to the relative stability of ground and meta-
stable states, we now return to the issue of the overall cluster
stability. To this end we compute themean Voronoi symmetry
parameter by averaging over allGM of a given shell
weighted with the respective particle numbersNsMd. The
results for the two outer shells forNø160 are included in
Fig. 1. We clearly see thatmagic clustershave not only a
high binding energy but also a prominent symmetryf19g; see
in particularN=12, 38, 103, and 116.

In summary, in this paper we have presented extensive

FIG. 1. sColor onlined Binding
energy D2 sright axisd and mean
Voronoi symmetry parameter
sMVSP, left axisd for the two out-
ermost cluster shells.sad Nø80;
sbd 80øNø160.

FIG. 2. Voronoi construction for the clusterN=17 for the two
energetically lowest states with shell configurationN=h1,16j.
White sgrayd areas are hexagonsspentagonsd, indicating the number
of nearest neighbors of the corresponding particlesblack dotd. sad
ground state;sbd first exciteds“fine structure”d state;scd arrange-
ment of the four particles surrounded by hexagons; the two states
differ by rotation of the edgeAB, black swhited circles correspond
to casesad fsbdg.
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simulation results for spherical Coulomb clusters withN
ø160. The observed cluster ground state configurations for
Nù60 differ, in most cases, from the ones previously re-
portedf17g which have a significantly higher energy and thus
correspond to excited states of the clusters. The presented
tablessfor the complete tables, seef20gd should be a valuable
reference for experiments with classical 3D Coulomb crys-
tals in dusty plasmasf15g, ultracold ionsf6g, or laser-cooled
expanding neutral plasmasf14g. Of course, real experiments
with ions or dust grains are likely to exhibit deviations from
the simple models1d—the interaction may deviate from the
Coulomb lawse.g., due to screeningd and may be direction
dependent, the confinement potential is often not perfectly
isotropic or parabolic, etc. Therefore, differences in the ex-
perimentally observed cluster configurations compared to the
above theoretical results may be valuable additional informa-
tion on imperfections of the experimental setupspossible an-
isotropic confinementd or on the plasma propertiessscreening
lengthd.

Moreover, the obtained ground state resultssshell con-
figurationsd are expected to be important also for quantum
3D Coulomb clusters which may exist, e.g., in semiconduc-
tor quantum dots in the strong coupling limit. It was found
before for 2D systems that, in most cases, the ground state

shell configurations in quantum crystals are exactly the same
as in the correspondingsessentially simplerd classical crys-
tals f9,12,21g. This remains an interesting question for future
analysis.

Further, we have presented an analysis of the lowest ex-
cited states of small clusters. Besides metastable states with a
shell structure different from the ground state we identified
“fine structure” states which are characterized by different
particle arrangement within the shells, an important property
not existing in 2D crystals. These states have a lower sym-
metry which is linked to higher values of the total energy.

Finally, knowledge of the lowest metastable states is very
important for understanding all dynamic properties of 3D
crystals. The metastable states are expected to be of rel-
evance for the collective excitations of the clusterssnormal
modes that are excited in the system if kinetic energy is
suppliedd as well as for the melting behavior of the 3D crys-
tals.
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