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The ground state of an externally confined one-component Yukawa plasma is derived analytically using the
local density approximation �LDA�. In particular, the radial density profile is computed. The results are
compared with the recently obtained mean-field �MF� density profile �Henning et al., Phys. Rev. E 74, 056403
�2006��. While the MF results are more accurate for weak screening, the LDA with correlations included yields
the proper description for large screening. By comparison with first-principles simulations for three-
dimensional spherical Yukawa crystals, we demonstrate that the two approximations complement each other.
Together they accurately describe the density profile in the full range of screening parameters.
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I. INTRODUCTION

Interacting particles in confinement potentials are omni-
present in nature and laboratory systems such as trapped
ions, e.g., �1,2�, dusty plasmas, e.g., �3–5�, or ultracold Bose
and Fermi gases �6,7� and quantum confined semiconductor
structures �8�. An interesting aspect of particle traps is that it
is easy to realize situations of strong correlations. The ob-
served particle arrangements extend from gaslike and liquid-
like to solid behavior where the symmetry is influenced by
the trap geometry. Of particular recent interest have been
spherical traps, in which plasma crystals consisting of spheri-
cal shells �Yukawa balls� are formed, e.g., �9–11�. The par-
ticle distribution among the shells is by now well understood
�11–13�.

In a recent study �14�, we also analyzed the average par-
ticle density in the trap and found that it is very sensitive to
the binary interaction: it changes from a flat profile in the
case of long-range Coulomb interaction to a profile rapidly
decaying away from the trap center in the case of a screened
Yukawa potential. Using a nonlocal mean-field �MF� ap-
proximation the density profile could be computed analyti-
cally and was found to agree very well with first-principles
computer simulations for Yukawa crystals. However, when
the screening is increased, deviations in the trap center kept
growing, which was attributed to correlation effects missing
in the mean-field model.

The goal of this paper is to remove these discrepancies.
For this we extend the analysis of Ref. �14� by including
correlation effects following an idea of Totsuji et al. �15�
applied to two-dimensional systems. We apply the local
density approximation �LDA� using known results �16� for
the correlation energy of a homogeneous one-component
Yukawa plasma. The results clearly confirm that correlation
effects are responsible for the strong density increase in the
trap center. We find that the LDA with correlations included
agrees very well with simulations of Yukawa crystals in
the limit of strong screening. On the other hand, for weak

screening, the previous MF result turns out to be more accu-
rate. Interestingly, for intermediate values of the screening
parameter both methods are accurate, so a combination of
both allows one to quantitatively describe the density profile
in the whole range of screening parameters.

This paper is organized as follows. In Sec. II we introduce
the LDA and use it first to compute the density profile in a
mean-field approximation, which, of course, gives worse re-
sults than a MF calculation, but helps to understand the
LDA. Then in Sec. III we improve the LDA model by in-
cluding correlation effects. In Sec. IV the results for the den-
sity profile are compared to molecular dynamics simulations.
A discussion is given in Sec. V.

II. GROUND STATE OF A CONFINED PLASMA
WITHIN THE LDA

We consider N identical particles with mass m and charge
Q confined by an external potential � and interacting
with the isotropic Yukawa-type pair potential V�r�= �Q2 /r�
�exp�−�r�. To derive the properties of interest we start with
the expression of the ground-state energy, which is given by

E�n� =� d3r u�r� , �1�

with the energy density u�r�=uconf�r�+uMF�r�+ucor�r�,
where the energy densities from confinement and from the
mean-field interaction are

uconf�r� = n�r���r� , �2a�

uMF�r� = n�r�
N − 1

2N
� d3r2n�r2�V��r − r2�� . �2b�

The correlation contribution ucor will be discussed below
�Sec. III� by means of the local density approximation. First,
we introduce this approximation and obtain first the LDA
results in the mean-field approximation �LDA-MF�. These
results will not be as accurate as the MF results, due to the
applied approximation, but the LDA-MF helps in familiar-
ization with the LDA and its characteristics.*bonitz@physik.uni-kiel.de
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The local density approximation is based upon the idea of
replacing the nonlocal terms within the energy density at
point r by local expressions using the known energy density
of the homogeneous system with its density n0 equal to the
local density n�r� of the true inhomogeneous system in ques-
tion. Therefore, to derive the LDA-MF we need to substitute
for the nonlocal term �2b�, i.e., for the density of interaction
energy, the corresponding expression of the infinite homoge-
neous system, which is given by �details are given in the
Appendix�

u0��� = n0
N − 1

2N
Q2� d3r2n0

e−��r−r2�

�r − r2�
=

N − 1

N
Q2n0

22�

�2 ,

�3�

and, as a second step, replace the homogeneous density n0 by
the local density n�r�. Thus we obtain the LDA-MF ground-
state energy

ELDA
MF �n� =� d3r u�r� �4�

with the energy density

u�r� = n�r����r� +
N − 1

N
Q2n�r�

2�

�2 � . �5�

The variation of the energy

ẼLDA
MF �n,�� = ELDA

MF �n� + ��N −� d3r n�r�� �6�

with respect to the density n�r� �for details see Ref. �14��
yields an explicit expression for the density profile in an
arbitrary confinement potential,

n�r� =
N�2

4��N − 1�Q2 �� − ��r�� , �7�

which holds at any point where the density is positive. Due
to �6� this density is normalized by

� d3r n�r� = N . �8�

The case of isotropic confinement ��r�=��r�, which is of
particular interest, leads to an isotropic density distribution
n�r�=n�r�= ñ�r���R−r�, the outer radius R of which is fixed
by the normalization condition �8�, which now becomes
	0

Rdr r2ñ�r�=N /4�. In this isotropic case the yet unknown
Lagrange multiplier � can be obtained by taking the varia-
tion also with respect to R �15�, which yields

� = ��R� . �9�

Compared to the MF result, which was given in �14�,

nMF�r� =
N

4��N − 1�Q2 ����r� + �2�MF − �2��r�� ,

�10�

�MF = ��RMF� +
RMF���RMF�

1 + �RMF , �11�

the LDA-MF density �7� shows important differences. On
the one hand, the Laplacian of the potential ���r� is missing
and, on the other hand, the expression for the chemical po-
tential � is simpler than �MF. That is based upon the fact that
the missing terms contain derivatives and thus information
about contiguous values of the potential, which is suppressed
within the LDA-MF and generally within the LDA. Conse-
quently, the finite density jump at r=R, which is familiar
from electrostatics of charged bodies and appears in the MF
approximation, Fig. 1, is not reproduced by the LDA-MF.

A. Parabolic confinement potential

For the case of a parabolic external potential ��r�
= �� /2�r2 the density following from Eqs. �7� and �9� is

n�r� =
�N

4��N − 1�Q2��2R2

2
−

�2r2

2
���R − r� . �12�

The dimensionless combination �R, which contains the lim-
iting outer radius, can be obtained from the normalization �8�
and is given by

�R =
5 15�N − 1�Q2�3

�
=
5 15

2
��dc�3�N − 1� . �13�

Here, we introduced the length scale dc= �2Q2 /��1/3, which
is the stable distance between two charged particles in the
absence of screening �11� and which will be used below as
the proper unit for lengths and screening parameters. As the
unit for densities we use the average density of a large Cou-
lomb system, which is given by nc= �3�� / �4�Q2�.

The results of �12� are shown in Fig. 1 for three particle
numbers from N=100 to 2000. One clearly sees the para-
bolic decrease of the density away from the trap center until
it terminates in zero. The curvature of the density does not
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FIG. 1. Radial density profile for a parabolic confinement po-
tential ��r�= �� /2�r2, a constant screening parameter �dc=1, and
three different particle numbers N=100, 700, 2000. The result for
�dc=0.4, N=2000 is also shown by the dashed line. For compari-
son, the nonlocal MF results for �dc=0.4,1.0, N=2000 are given by
the dotted lines.
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change on increasing the particle number—just the density
increases continuously at every space point and, at the same
time, extends to higher values of the limiting radius R. How-
ever, the curvature of the density profile changes dramati-
cally when the plasma screening is increased at constant N.

Thus, in the case of an isotropic parabolic potential, the
LDA density profile bears a qualitative resemblance to the
density profile in the nonlocal mean-field approximation, al-
though in the case of other confinement potentials the devia-
tions of the LDA-MF from the MF approximation are stron-
ger �cf. Eqs. �7� and �10��. However, quantitatively at two
points the MF result differs from the LDA-MF for parabolic
confinement as well, as can also be seen in Fig. 1.

First, the density in this local density approximation does
not show a discontinuity at r=R, in contrast to the MF result,
Eqs. �10� and �11�. This is due to the neglect of edge effects
in this derivation of the LDA result. Second, the LDA-MF
yields too small values of the density. This error is reduced
�see Fig. 2� with increasing values of the density parameter
x= ��dc�3�N−1� �cf. Ref. �14��, which, regardless of the fac-
tor N / �N−1�, solely determines the density profile. The rea-
son for this improved behavior with increasing x is that an
increase of � contracts the effective area of integration
within �2b� as well as within �3�. The contraction finally is in
favor of the accuracy of the LDA-MF, because the decreased
integration volume contains a more homogeneous density.
Also, an increase of the particle number N, which flattens the
density profile, will similarly improve the LDA-MF.

Because the validity of the mean-field model depends on
the value of the screening parameter �dc, there are the fol-
lowing two cases. In the first case, for small values of the
screening parameter, the MF approximation provides a good
description of the density profile, but the LDA-MF under-
rates this profile and so does not give a good description on
its own. �That applies also if finite-size effects are included;
see Fig. 3.� In the second case, for large values of the screen-
ing parameter, the LDA-MF approaches the MF approxima-
tion; however, there, the latter does not describe the density
profile correctly due to the neglect of the now relevant cor-
relation contributions �15�. Thus, the local density approxi-
mation of the mean-field energy alone does not give a good
description of the density profile.

However, it gives a straightforward way to include the
missing correlation contributions in the energy density by
usage of the result for the homogeneous system; see Sec. III.

B. Improvement of the LDA by inclusion of finite-size
effects

As can be seen from Fig. 2 and from Eq. �7� the density
profile obtained by the LDA-MF breaks down in the Cou-
lomb case—the density can no longer be normalized, which
is the same as in the two-dimensional case �15�. But the
application of a local density approximation cannot be the
reason for this, because the method of the LDA is based
upon the usage of results from the homogeneous system, and
the Coulomb system is homogeneous with n0= �N / �N
−1��nc.

In fact, the cause of the breakdown is the use of results
from the infinite homogeneous system, neglecting finite-size
effects. This failure can be avoided by replacing �3� by the
corresponding expression for the finite homogeneous system.
In the Appendix such an expression is derived for isotropic
confinement. As a result, the finite-size effects lead to a cor-
rected density profile

n�r� =
N�2

4��N − 1�Q2

� − ��r�
1 − e−�R�1 + �R�sinh��r�/��r�

���R − r� , �14�

instead of Eq. �7�, which indeed yields the constant MF so-
lution in Coulomb case also for the LDA-MF. As another
example, in Fig. 3 the density profiles with �LDA-MF �fs
corrected�� and without these finite-size contributions are
shown for N=1000, �dc=0.3. One clearly sees that in the
case of finite-size correction the density profile shows a dis-
continuity at the boundary and, due to that, it yields in-
creased values of the density. However, the density profile
including edge effects is not monotonically decreasing away
from the trap center but has a density-increasing part in the
outer range, which is not correct. This is due to the space
dependence of the denominator of Eq. �14�.
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FIG. 2. �Color online� Radial MF density profile �solid lines�
compared to the LDA-MF �dashed lines� for three different density
parameters x= ��dc�3�N−1�. The abscissa is normalized with the
MF radius RMF, while the ordinate is normalized with the corre-
sponding MF density nMF�0� at the trap center.

0

1

2

3

n
(r

)/
n

c

0 1 2 3 4 5 6 7 8 9 10
r/dc

κdc = 0.3

N = 1000

MF

LDA-MF

LDA-MF (fs corrected)

LDA-MF (partly fs corrected)

FIG. 3. Radial density profiles of a spherical plasma of N
=1000 and �dc=0.3 calculated by the LDA-MF with �fs corrected�
and without finite-size effects included. For comparison, the exact
MF result is also given �solid line�. The difference between the
finite-size correction and the partial finite-size correction is de-
scribed in the text.
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By contrast a more accurate monotonically decreasing
density profile can also be obtained by taking the finite-size
effects only partly into account �LDA-MF �partly fs cor-
rected��, as derived in the Appendix. The final result is
given by

n�r� =
N�2

4��N − 1�Q2

� − ��r�
1 − e−�R�1 + �R�

��R − r� , �15�

which now misses the r dependence in the denominator. The
corresponding result is also given in Fig. 3.

Consequently, for Yukawa systems like those analyzed
here, an improvement of LDA is possible by including edge
effects. However, for small values of the screening parameter
even the improved local density approximation does not ap-
proach the degree of accuracy obtained by the nonlocal
mean-field model MF �cf. Fig. 3�. On the other hand, for
increased screening the finite-size effects do not alter the
density profile significantly.

Therefore, below we continue to use Eq. �3� from the
infinite homogeneous system.

III. INCLUSION OF CORRELATION CONTRIBUTIONS

The energy expression ELDA
MF �4�, �5� contains only the

energy density of the confinement and of the mean-field in-
teraction. To include the contribution of the particle correla-
tions, we can make use of the result for the density of the
correlation energy of the homogeneous system which is
given by Eq. �3� of Ref. �16�:

ucor�n0,�� = − 1.444Q2n0
4/3exp�− 0.375�n0

−1/3

+ 7.4 � 10−5��n0
−1/3�4� , �16�

where n0 is the corresponding density of the homogeneous
system. By replacing this density with the local density n�r�
of the inhomogeneous system, one obtains the correlation
contribution of the energy density within the LDA. Thus we
derive the complete ground-state energy in the local density
approximation,

ELDA�n� =� d3r u�r� , �17�

with energy density

u�r� = n�r���r� +
N − 1

N
Q2n�r�22�

�2 − 1.444Q2n�r�4/3

�exp�− 0.375�n�r�−1/3 + 7.4 � 10−5��n�r�−1/3�4� .

�18�

As before, variation of the energy �17� at constant particle
number �cf. Eq. �6�� yields the ground-state density profile,
but now with correlation effects included. In this case the
strong nonlinear character of the energy density does not
allow for an explicit solution. Just an implicit solution is
possible and is given by the following equation for z3�r�
=�−3n�r�, which can be regarded as the local plasma param-
eter of the system:

0 =
N − 1

N
z3�r� +

��r� − �

4�Q2�
− �c1z�r� + c2 − c3z�r�−3�

�exp�− 0.375z�r�−1 + 7.4 � 10−5z�r�−4� . �19�

The constants ci are given by

c1 = 0.153, �20a�

c2 = 0.0144, �20b�

c3 = 1.134 � 10−5. �20c�

The solution of Eq. �19� can be obtained numerically. For
the case of a parabolic external potential ��r�= �� /2�r2 re-
sults are given in Fig. 4. There, the density profile of a
plasma of N=2000 particles within LDA is shown for three
different screening parameters: �dc=0.5, 2.0, and 3.0. For
comparison the LDA-MF density profile is shown, too.

It can be seen that for a small screening parameter �see
the line �dc=0.5� both density profiles are nearly identical.
But with increasing screening, i.e., for smaller values of the
local plasma parameter z3, the correlation contributions
within the LDA alter the curvature of the profile, which rises
more steeply toward the center. So the particle correlations
tend to increase the central density of the plasma, which can
also be seen in Fig. 6 in comparison with the mean-field
approximation.

IV. COMPARISON WITH SIMULATION RESULTS
FOR FINITE YUKAWA CRYSTALS

We performed molecular dynamics simulations of the
ground state of a large number of Coulomb balls for the
purpose of comparison of their average density with the ana-
lytical results of the present model �for simulation details,
see Refs. �10,11��. In order to obtain a smooth average radial
density profile, the averaging process was accomplished by
substituting for each particle a small but finite sphere. In Fig.
5 these smoothed density profiles are shown for different
sphere radii of the particles: 0.3dc, 0.4dc, and 0.5dc. Also the
average particle densities in the vicinity of the corresponding
shells are shown �crosses�. Note that there is only a small
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FIG. 4. Radial density profile of a confined spherical plasma of
N=2000 particles calculated with the LDA including correlation
contributions �solid lines� compared to the LDA-MF �dashed lines�
for three different screening parameters.
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range of reasonable sphere radii: for values smaller than
0.3dc the shells break up into subshells, whereas for values
larger than 0.5dc the amplitude of the oscillations decreases
further without effect on the average density. Only the outer
shell density is somewhat sensitive to the sphere radius due
to the increase of the size of this shell with increasing sphere
radius. Therefore, for the comparisons below, we use the
sphere radius corresponding to the average of the possible
density values which, in the figure, is close to the value for
0.4dc.

Numerical results of the comparison with a Coulomb ball
of N=1000 particles are included in Fig. 6 for four different
screening parameters. The symbols denote the average shell
density, while the lines represent the MF �solid� and the LDA
density �dashed�. For small values of the screening parameter
�dc	2 the simulation results are very well reproduced by
the analytical density profile of the nonlocal mean-field
model �MF�, whereas the local density approximation under-
rates the results �lower lines in Fig. 6�a��. On the other hand,
for larger values of the screening parameter �dc
2 the
simulation results are reproduced by the LDA, whereas MF
underestimates these results in the center. This underestima-
tion is accompanied by a wrong prediction of the profile
curvature �Fig. 6�b��. For intermediate values of the screen-
ing parameter �dc2, both methods are very close to the
averaged simulation results �upper lines in Fig. 6�a��. We
have verified this behavior also for other Coulomb balls. An-
other representative example is shown in Fig. 7 for a Cou-
lomb ball with N=10 000. There, the same behavior as in
Fig. 6 is seen.

V. SUMMARY AND DISCUSSION

A theoretical analysis of the ground-state density profile
of a spatially confined one-component plasma within the lo-
cal density approximation was presented. We derived a
closed equation, Eq. �19�, for the density profile, including
correlation effects for arbitrary confinement potentials with
any symmetry. In contrast to the result without particle cor-
relations, the density profile shows an increased central den-
sity with increasing screening parameter. The validity of the

LDA is, however, limited to not too small values of the
screening parameter, �dc�2.

Comparisons with first-principles simulation results of
strongly correlated Coulomb clusters with varying screening
parameter showed that the LDA allows one to remove the
problem of the MF approximation observed in Ref. �14�
which arises with increasing screening parameter. Therefore,
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the mean-field model together with the presented local den-
sity approximation complement one another in the descrip-
tion of strongly correlated spatially confined one-component
plasmas.
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APPENDIX: LOCAL DENSITY APPROXIMATION USING
A FINITE REFERENCE SYSTEM

The investigation of an inhomogeneous system within the
LDA uses known results from the corresponding homoge-
neous system. There, the infinite homogeneous system is of-
ten used as a reference system, which entails the neglect of
finite-size effects. To take these into account, the finite ho-
mogeneous system has to be used as reference. In the present
derivation such a modification is made for an isotropic con-
finement and leads to a change of the expression for the
density of interaction energy, Eq. �3�,

u0��� = n0
N − 1

2N
Q2� d3r2n0

e−��r−r2�

�r − r2�

= n0
2N − 1

2N
Q2� dr2 4�r2

2e−�r2

r2

=
N − 1

N
Q2n0

22�

�2 . �A1�

This formula has no spatial dependence due to the infinite
integration volume and it diverges in the limit of Coulomb
interaction ��→0�, leading to a breakdown of the approxi-
mation.

By contrast, the density of interaction energy of the cor-
responding finite homogeneous system �a sphere with center
r2=0 and radius R� is given by

u0��,r� = n0
N − 1

2N
Q2�

S�0,R�
d3r2n0

e−��r−r2�

�r − r2�

= n0
2N − 1

2N
Q22�

�r
�

0

R

dr2r2�− e−��r+r2� + e−��r−r2��

= n0
2N − 1

2N
Q24�

�r �e−�r�
0

r

dr2r2 sinh��r2�

+ sinh��r��
r

R

dr2 r2e−�r2�
=

N − 1

N
Q2n0

22�

�2 �1 − e−�R�1 + �R�
sinh��r�

�r
� ,

�A2�

including a finite-size contribution, which prevents the prob-
lem of divergence at �→0. As already mentioned in Sec.

II B the resulting density profiles show the incorrect behavior
of a nonmonotonic density profile �cf. Fig. 3�.

An improved correction, which partly takes edge effects
of the system into account too, can be obtained by using the
finite homogeneous sphere centered not at r2=0 but at r2
=r, i.e., on the point where we are calculating the density of
interaction energy,

u0��,r� = n0
N − 1

2N
Q2�

S�r,R�
d3r2n0

e−��r−r2�

�r − r2�

= n0
2N − 1

N
Q22��

0

R

dr2r2e−�r2

=
N − 1

N
Q2n0

22�

�2 �1 − e−�R�1 + �R�� . �A3�

This expression also has no divergent limit for �→0, and, at
the same time, yields monotonically decreasing density pro-
files as can also be seen in Fig. 3.

All these methods described above are compared, together
with the MF approximation, in Fig. 8 showing the �effective�
integration area of the methods. First consider the Coulomb
case, i.e., that where the solid regions fill out the hatched
ones and where the density is constant within the MF method
too. There, the integration in Fig. 8�a� is equal to that in Fig.
8�c�; thus the density obtained by the LDA �fs corrected� is
equal to that of the MF method. In contrast to that, the ef-
fective integration area within Fig. 8�b� is infinite, leading to
the breakdown mentioned above. In the case of finite screen-
ing, where effectively the integration area is reduced, Figs.
8�a� and 8�c� still have the same region of integration. But
the constant approximation within Fig. 8�c�, in contrast to
Fig. 8�a�, leads to an underestimation of the energy density in
the outer region of the system—the high values of density
toward the center will be ignored. Eventually this leads to the
nonmonotonic density profile of the LDA �fs corrected�. By
contrast, Fig. 8�d� features an additional effective integration
region, which partly prevents the underestimation, leading to
the more accurate density profile of the LDA �partly fs cor-
rected�.

×r
a)

×r
b)

×r
c)

×r
d)

FIG. 8. Comparison of the MF method and the different LDA
methods for calculating the energy density of interaction uMF�r� in
the case of finite screening: �a� MF, �b� LDA �infinite reference
system�, �c� LDA �fs corrected�, and �d� LDA �partly fs corrected�.
Within the graphics the system is represented by the dashed line.
The hatched region shows the integration area used within the
method, whereas the solid gray region shows the effective integra-
tion area due to finite screening. The color gradient within �a� rep-
resents the nonconstant density of the system, which is taken into
account within the MF method in contrast to the LDA methods,
which take the density at point r for the whole integration area.
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