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Probability of metastable configurations in spherical three-dimensional Yukawa crystals

H. Kihlert,' P. Ludwig,' H. Baumgartner," M. Bonitz,' D. Block,” S. Kiiding,” A. Melzer,? and A. Piel®
llnstitut_ﬁir Theoretische Physik und Astrophysik, Christian-Albrechts Universitdit zu Kiel, 24098 Kiel, Germany
2Institut fiir Experimentelle und Angewandte Physik, Christian-Albrechts Universitdit zu Kiel, 24098 Kiel, Germany
3 Institut fiir Physik, Ernst-Moritz-Arndt Universitit, 17487 Greifswald, Germany
(Received 29 May 2008; published 19 September 2008)

Recently the occurrence probabilities of ground and metastable states of three-dimensional Yukawa clusters
with 27 and 31 particles have been analyzed in dusty plasma experiments [D. Block et al., Phys. Plasmas 15,
040701 (2008)]. There it was found that, in many cases, the ground state appeared substantially less frequently
than excited states. Here we analyze this question theoretically by means of molecular dynamics (MD) and
Monte Carlo simulations and an analytical method based on the canonical partition function. We confirm that
metastable states can occur with a significantly higher probability than the ground state. The results strongly
depend on the screening parameter of the Yukawa interaction and the damping coefficient used in the MD
simulations. The analytical method allows one to gain insight into the mechanisms being responsible for the
occurrence probabilities of metastable states in strongly correlated finite systems.
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I. INTRODUCTION

Finite strongly coupled systems of charged particles in
external traps are of high interest in many fields. Examples
include ion crystals [1,2], quantum dots [3] and dusty plasma
crystals [4,5]. Dusty plasmas allow for an easy realization of
strong coupling in laboratory experiments. They typically
consist of um sized particles in an rf discharge. Due to their
high mass their motion occurs on a macroscopic time scale
which makes them an ideal system for studying dynamical
properties in the strong coupling limit. In the case of an
isotropic parabolic confinement and (screened) Coulomb in-
teraction the ground states are nested spherical shells [three
dimensional (3D)] or concentric rings [two dimensional
(2D)].

For classical systems the ground states are found by mini-
mizing the potential energy U with respect to all particle
positions. This can be a difficult task since in general U has
many minima which may be energetically very close to each
other, particularly in 3D. To find the lowest energy configu-
ration one must avoid trapping in a metastable state, which
can be a serious problem for numerical computations. A de-
tailed analysis of the ground states of 3D Coulomb clusters
was presented in [6,7]. The ground states of small spherical
Yukawa clusters for a wide range of the screening parameter
can be found in [8]. Besides the ground state also metastable
states were found in the simulations [6,7,9]. Furthermore, a
fine structure was observed, i.e., states with the same number
of particles on each shell but with a different arrangement on
the same shell [6].

Coulomb or Yukawa balls have been produced in dusty
plasma experiments [4]. They are well explained by a simple
model of harmonically confined particles interacting by a
Yukawa potential for N=100-500 [10]. Recently metastable
states of Yukawa balls have been investigated in [11] for
small particle numbers N=27 and N=31. It was found that
often metastable states occurred with a higher probability
than the ground state. This was confirmed by MD simula-
tions but no theoretical explanation was given. This is the
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goal of the present paper. We apply Monte Carlo (MC) simu-
lations as well as extensive molecular dynamics (MD) simu-
lations with a broader parameter range than before, confirm-
ing the main results of [11]. For a theoretical explanation we
apply an analytical method based on the classical canonical
partition function [12].

This paper is organized as follows. In Sec. II we present
the Hamiltonian and explain our simulation methods. Results
of the MD simulations are given in Sec. III. In Sec. IV we
introduce an analytical method for the probabilities of sta-
tionary states in thermodynamic equilibrium. The results are
compared to MC simulations. Section V compares the theo-
retical results with the experiments. The last section summa-
rizes our findings and discusses the applicability range of our
models.

II. MODEL AND SIMULATION IDEA
A. Hamiltonian

The system of N identical particles with charge Q and
mass m in an isotropic, parabolic confinement

m
Vext(r) = Ewél"z (1)
(r=|r|) is described by the Hamiltonian

N 2 N
H=E(ﬂ'{'vext(ri))+2V(|ri_rj|)' (2)
i=1

2m i>j

The interaction is assumed to be a shielded Coulomb poten-
tial of the form

2
V= Lo, 3)

where the range of the potential is controlled by the screen-
ing parameter k. Despite its simplicity this model is of rel-
evance for many systems, such as colloids, and has proven to
accurately describe the spherical dust crystals (Yukawa balls)
observed in experiments [10].
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Other forms of the interaction potential and their influence
on dust crystallization have been widely discussed in the
literature, e.g., [13-15]. Especially the effect of streaming
ions creating an attractive wakefield potential and ion focus-
ing effects has been of great interest. In the experiments of
Ref. [11], to which we will specifically compare our results,
the clusters are well described by simple Debye screening.
There, the effect of streaming ions is negligible since the
dust levitates at a height where the electric field is weak and
the ion flow subsonic [16]. In addition no vertical chains
have been observed which typically occur in experiments
conducted in the sheath region. Thus, the use of the isotropic
Yukawa potential is well justified. Collective effects arising
from the presence of other grains are not included in this
model since they do not play a dominant role here.

Results will be given in units of the distance r,
=(2Q%/mwj)"® and the corresponding Coulomb energy E,
=Q?/r,. Frequencies and forces are given in units of w, and
mw(z)ro, respectively. The screening parameter « is measured
in units of ral. In the experiments it is mostly determined by
the inverse ion Debye length, kP = )\Z)li, which can be deter-
mined by comparing the simulation results with the experi-
ment.

The ground (metastable) states are the global (local)
minima of the potential energy U,

N N
U(rl’""rN)zzVext(ri)+zv(|ri_rj|)- (4)
i=1

i>j

In both cases the total force on all particles vanishes and the
system is in a stable configuration, i.e., stable against small
perturbations.

B. Monte Carlo

The MC simulations use the standard Metropolis algo-
rithm [17] with the Hamiltonian (2), but without the kinetic
energy part. Starting from the classical ground state at 7=0
the system is given a finite temperature. For a fixed tempera-
ture we performed 10’ MC steps and determined the con-
figuration every 10*h step. The temperature is then increased
and the same procedure repeated. Ergodicity of the proce-
dure was checked by using different initial configurations.
Following this method we calculate the probability as a func-
tion of 7 from the number of occurrences of the different
states.

C. Molecular dynamics

In the MD simulations we follow a different approach.
Here, we solve the equations of motion for particles in a
parabolic trap interacting through the Yukawa potential (3)
but include an additional damping term to simulate the an-
nealing process the way it occurs in the experiment, as ex-
plained in [11]. This is different from the MC simulations
where the particles are in contact with a heat bath and main-
tain a constant temperature. This also differs from the MD
simulations in [11] which were also performed at finite tem-
perature. Here, we perform substantially larger simulations
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and systematically scan a broad parameter range. For the ith
particle the equation of motion we solve is

mit; ==V, U(ry, ....,ry) — vmi;, (5)

where v is the collision frequency which will be given in
units of wy. Due to the friction term the system described by
Eq. (5) is non-Hamiltonian. In dusty plasmas friction is
mainly due to the neutral gas.

The simulation is initialized with random particle posi-
tions and velocities in a square box. To stop the simulation
and determine the configuration we use two similar, but not
equivalent conditions:

(A) The particles’ mean kinetic energy drops below a
threshold value (E") of typically 1076-1078.

(B) The force on each particle due to the confinement and
the other particles decreases below 1074,

It is tempting to define (A) as a proper condition but we
will show that (B) must be used, although they look equiva-
lent at first glance. The difference lies in the definition of a
stable configuration. If the particles lose their initial kinetic
energy before they have reached a local minimum the simu-
lation could be stopped before the particle motion has effec-
tively ended. This problem can be circumvented by condition
(B) which makes direct use of the definition of a stable state,
namely that the force on each particle due to U vanishes.

The screening parameter, the friction coefficient, as well
as the lower limit for the mean kinetic energy are varied. For
each parameter setting the simulation is repeated 3000-5000
times to obtain accurate statistics. We consider systems with
31 and 27 particles as was done in the experiment. As an-
other example we used a cluster with 40 particles because
here the ground-state shell configuration abruptly changes
from (34,6) to (32,8) at k=0.415 as the screening parameter
is increased—without the configuration (33,7) ever being the
ground state [8]. This gives rise to the question of how often
this configuration can actually occur in experiments.

III. MD SIMULATION RESULTS

In this section we present the results of our first-principle
MD simulations. The main parameters determining the oc-
currence frequencies of different metastable states for a
given N are the screening parameter « and the friction v. We
therefore discuss the dependence on « and v in detail. As an
example of particular interest we will consider the parameter
values of dusty plasma experiments which are in the range of
k=~0.4—1.0 [11]. This case will be dealt with in Sec. V.

We first discuss the effect of the damping rate on the
occurrence probabilities. It will turn out that with a properly
chosen rate we can produce very general results for different
screening lengths which do not depend on the exact chosen
damping coefficient and hold for any rate in the overdamped
limit. The effect of screening will then be examined in the
following section.

A. Effect of friction

A typical simulation result is shown in Fig. 1. For slow
cooling (v=0.05) the particles are not hindered by friction
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FIG. 1. (Color online) Stationary states observed in the MD
simulations for N=31, k=1.4, and (EEL"): 1078. The runs are sorted
by the energy or the stationary state, see also Table I. For slow
cooling (black bars, »v=0.05) one can clearly see distinct states
which correspond to the horizontal lines. The length of the bold
lines is proportional to the occurrence probabilities. In the case of
strong friction (red, dashed line, v=5.3) the particles often lose their
kinetic energy before they can settle into the equilibrium positions
and the fine structure (different states with same shell configuration)
cannot be resolved.

and can move according to the interparticle and confinement
forces. They continuously lose kinetic energy until they are
trapped in a local minimum of the potential energy U. Here
they are further being damped until the simulation is
stopped. It is interesting to see that there exist more meta-
stable states than different shell occupations, as was first ob-
served in [6], see also [9]. Details are given in Table I.

In the case of strong damping (v=5.3) the situation is
different. Here the particles are readily slowed down after the
initialization process in the box. Their motion is strongly
affected by friction and interrupted even before they may be
trapped in a local minimum. If condition (A) is used to stop
the simulation it is not clear if the particles are in a stable
state. The reason is that due to the rapid damping they can be
sufficiently slowed even though they are not in a potential
minimum but on a descending path and would reach the
stable configuration at a later time.

Figure 2 shows the influence of friction on the occurrence
probabilities in more detail. For fixed screening the probabil-
ity of finding the ground-state configuration increases when
the friction coefficient is decreased. Here the particles are
cooled down more slowly and it is more likely that they

TABLE 1. Energy difference between metastable states and the
ground state (the ground state and its energy is given by italic
numbers) as seen in Fig. 1. States with the same shell configuration
but different energy differ only by the arrangement of the particles
on the same shell (fine structure).

AE/N Configuration AE/N Configuration
3.030266 (27,4) 0.000479 (26,5)
0.000006 (27,4) 0.000499 (26,5)
0.000009 (27,4) 0.000530 (26,5)
0.000291 (26,5) 0.000656 (25,6)
0.000372 (26,5) 0.000669 (25,6)
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reach the system’s true ground state. During the cooling pro-
cess they still have a sufficiently high kinetic energy and
time to escape from a local minimum until the force on each
particle vanishes. In the case of strong friction the particles
can fall into a nearby minimum and leaving it becomes more
difficult due to the rapid loss of kinetic energy. The typical
simulation time until the forces are small enough is longer
than for intermediate friction strength. Once cooled down the
particles are pushed along the gradient of the potential en-
ergy surface until they reach a stable state. Thus, the results
can depend on how far the system’s temperature is de-
creased. One can see that for »>2, i.e., in the overdamped
regime, the probabilities have practically saturated. For fast
cooling, i.e., large friction, metastable states can occur with a
comparable or even higher probability than the ground state.

The N=40 cluster shows a qualitatively different behavior
compared to the N=27,31 clusters. In the case of k=1.0 the
lines corresponding to different configurations do not inter-
sect and the ground state is the most probable state regardless
of the damping coefficient. In contrast, in the Coulomb limit,
k=0, the most probable state is always a metastable state,
except for very small friction, v<0.01.

Dusty plasma experiments are performed in the over-
damped regime, i.e., here v is of the order of 3-6 [11]. Since
in this limit the probabilities depend only very weakly on the
damping rate the results presented in the next section for v
=3.2 should hold for any such damping coefficient. Even
though this was shown only for a few examples we believe
that this also holds for other particle numbers and screening
lengths.

B. Effect of screening

The screening dependence of the ground-state shell con-
figurations of spherical Yukawa clusters in the absence of
damping has been analyzed in Ref. [10]. The general trend is
that increased screening favors ground-state configurations
with more particles on the inner shell(s). A systematic analy-
sis in a large range of particle numbers and screening param-
eters [8] confirms this trend. Here we extend this analysis to
spherical crystals in the presence of damping and also con-
sider the screening dependence of the occurrence probability
of metastable states.

For a fixed friction coefficient in the overdamped limit the
effect of screening is shown in Fig. 3. The different ground-
state configurations are indicated by the numbers with ar-
rows in the figures. As in the undamped case, at some finite
value of k, a configuration with an additional particle on the
inner shell becomes the ground state. Consider now the prob-
ability to observe the ground and metastable states. For weak
screening the ground states (27,4) and (24,3) are the most
probable states in the cases N=31 and N=27, respectively.
At the same time in both cases, the probability of the con-
figuration with one more particle on the inner shell grows
with k, until it eventually becomes even more probable than
the ground state. Note that this occurs much earlier (at a
significantly smaller value of «) than the ground state
change. For N=31 this trend is observed twice: The prob-
ability of the configuration (26,5) first increases with x and
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FIG. 2. (Color online) Effect of friction on the occurrence probabilities obtained with condition (B) for three different numbers of
particles. In (a) and (b) horizontal solid and dashed lines indicate experimental mean and standard deviation, respectively [11]. For N=27 the
experimental values for the clusters (23,4) and (24,3) are the same. In (c) solid lines indicate Yukawa interaction with x=1.0 [ground state
(32,8)] whereas dashed lines show results for Coulomb interaction [ground state (34,6)]. In all cases slow cooling favors the ground states

over metastable states.

reaches a maximum around x=1. For «>2 this configura-
tion becomes less probable than the configuration (25,6), i.e.,
again a configuration with an additional particle on the inner
shell becomes more probable with increased screening.

Different behavior is observed for the N=40 cluster where
the ground state for weak screening (34,6) is never the most
probable state. For large screening, k= 0.6, the new ground
state (32,8) has the highest probability, but this happens only
substantially later (for larger «) after this state has become
the energetically lowest one. This is due to the existence of a
third state (33,7) which has the highest probability for «
=< 0.6 although it is never the energetically lowest one.

Summarizing the above observations we confirm that in
spherical Yukawa clusters the ground state is not necessarily
the most probable state. Often, a metastable state with more
particles on the inner shell is observed substantially (in some
cases up to 5 times) more frequently. Further, increased
screening tends to favor states with more particles on the
inner shell. The interaction range and thus the effective size
of the particles is decreased so they can be more closely
packed. In addition the potential energy is lower near the
center of the trap. We will give a more detailed explanation
for this behavior in the next section by using an analytical
model for the partition function.

Before doing this we comment on some technical details
which are important in the present MD simulations. For cer-
tain intervals of the screening parameter the results for the
probabilities depend on how far the system is cooled down.
Here one state (generally the ground state) is favored over
another, the smaller (E[.") is chosen. This also means in-

creasing the mean simulation time. As discussed before the
particles are heavily damped and lose their initial kinetic
energy on a short time scale. Their motion is then determined
by the shape of the energy surface. Using condition (B) to
terminate the simulation we obtain converged results where
the particles have reached a local minimum. Thus, if the
simulation would be continued the configuration would re-
main the same. This is quite similar to the experimental pro-
cedure, which is explained in detail in Ref. [18(a)]. There,
the cluster is also given a long equilibration time to reach a
stable state.

IV. ANALYTICAL THEORY OF STATIONARY
STATE PROBABILITIES

A. Harmonic approximation

The analytical approach to calculating the occurrence
probabilities is based on the classical canonical partition
function Z(T, w,,N). Instead of the dependence on volume
(or density) as in a homogeneous system, here thermody-
namic quantities depend on the confining strength w,. The
partition function can be evaluated analytically in the har-
monic approximation, see, e.g., Ref. [12]. Here the potential
energy of a given state is expanded around a local minimum
with energy Eg, where s denotes the ground or metastable
state. It can be written as

036408-4



PROBABILITY OF METASTABLE CONFIGURATIONS IN... PHYSICAL REVIEW E 78, 036408 (2008)

—(252) (28.3)
== (24,3) = (27.4)
087 les(234) —(26,5)
o (22,5) s (25,6)
E 0.6 S .
=
<
O
S 04+
Ll
0.2
0,

0 G40
Bx
= 0.6%——=a_ - o (34,6)
I e (337) |
S 0.4l —(32.8) |
a (31,9)

o \\\”\4«— 4 Ly
0 0.5 . 1 1.5 2
screening parameter K

FIG. 3. (Color online) Effect of screening for ¥=3.2. Solid lines show the results obtained with condition (B) while dotted and dashed
lines indicate use of condition (A) with (Eji")=107%, 1077, respectively. Arrows show the ground-state configuration to the left or right from
the vertical line. Where available horizontal solid and dashed lines indicate experimental mean and standard deviation [11]. For the N

=27 cluster the experimental values for the configurations (23,4) and (24,3) are the same.
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where r05=(r(1)s, ,r,?,s) denotes the 3N-dimensional vector

of the particles’ equilibrium positions and 5r,-,a=r,»,a—r§”a the

displacement vector. Transforming to normal coordinates & ;

this turns into a sum of decoupled harmonic oscillators

f
1
U,~E+ 52 mao. &, f=3N-3, (6)

i=1

with eigenfrequencies w;;, which are the square roots of the
eigenvalues of the Hessian [18(b)]

FU(r)

hap i g | =05

The expansion (6) includes the particles’ three center-of-
mass oscillations in the trap with w=1 (in units of w). Fur-
thermore, we assume that the vibrational and the three rota-
tional modes of the whole system (w=0) are decoupled, the
latter are, therefore, eliminated from the sum (6). In the prin-
cipal axes frame the rotational kinetic energy can then be
expressed as

32
LS.

Tt = 2 sl

K ’

i1 2y,

with angular momenta L, ; and constant principal moments of

inertia /; ;. In this approximation the full energy of the state s
is, to second order in the displacements,

(pé 512
om .
E.=E’+ = — 2 Z,A)+ —=L 7
S N E 2m 2wb,l§b,l z 2ISJ. ( )

The first term in parentheses denotes the vibrational kinetic
energy T'".

The harmonic approximation is only applicable for low
temperatures (or strong coupling) when the particles oscillate
around the equilibrium positions with a small amplitude.

B. Partition function
The general form of the classical canonical partition func-

tion is

n “ S
Zs = m[ dpSqu3N€_BH (P,',q,'). (8)

Here it is written for a general Hamiltonian H*(p;,q;) with
3N degrees of freedom, generalized coordinates ¢g;, and con-
jugate momenta p;. Since in our case the energy contribu-
tions are independent it can be factorized according to

Z,=nZ" 27" 9)
with the internal partition function

ZM = ¢ PE (10)

and the degeneracy factor n, calculated as
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TABLE II. Mean shell radii R, R, of first and second shell for
states observed in the MD simulations for N=27 and x=0.6. The

relative statistical weight 7,=(I,/1,)*? caused by different moments

of inertia can be neglected in the computation of the probabilities
since g,= 1 for all states.

State s Configuration R, R, qs
1 (24,3) 1.6175 0.5977 1
2 (23,4) 1.6413 0.6963 1.0009
3 (23,4) 1.6413 0.6957 1.0009
4 (25,2) 1.5935 0.4542 1.0004
5 (25,2) 1.5934 0.4543 1.0004
N!
né‘ = L > (1 1)
A

i=1

where L is the number of shells and N; the occupation num-
ber of shell i with EiLle,:N. The degeneracy factor n, de-
notes the number of possibilities to form a configuration with
shell occupation (N;,N,,...,N;) from distinguishable par-
ticles.

ZZ‘b is the partition function for f independent harmonic
oscillators while Zi™* is related to the rotational degrees of
freedom. The results for our specific case with the energy
given by Eq. (7) can be found in [12] and read as

. kT \
Z77(T) = (i> , 12
s (T) na, (12a)
ot ZWkBTZ "
Z(T) = T (12b)

The expressions include the mean geometric eigenfrequency

Q,=(_ 0, )" and the mean moment of inertia I,
= (Ix, lIs,ZIs,3) 1/3'

To obtain the total partition function Z(T, w,,N) the con-
tributions of all M (metastable) states are summed up, i.e.,

M
Z=>7,.
o=1

C. Probability of stationary states

Collecting the results of Sec. IV B, the stationary state
probabilities are given by

Z
Ps:?: Tt (13)

For our clusters of interest with 27-40 particles the moments
of inertia for different states are equal to a good approxima-
tion (cf. Table II for N=27) and can be canceled. Similar
behavior is observed for N=31,40. For low particle num-
bers, N=10, they should be included, since here a slight
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TABLE III. Energy difference between metastable states and the
ground state (ground-state energy given in italic numbers) that were
used to compute the partition function for N=27 and «=0.6. Also
shown is the relative statistical weight 77,=n,/n and the statistical
weight due to the eigenfrequencies w,=({2,/€,) compared to the
ground state.

State s Configuration AE/N 78 W
1 (24,3) 4.732856(4) 1 1
2 (23.4) 0.001622(1) 6 0.24
3 (23,4) 0.001870(5) 6 0.67
4 (25,2) 0.004993(0) 3/25 14
5 (25,2) 0.004997(3) 3/25 3.3

change of the configuration can alter the moment of inertia
by a significant amount, but this is not of importance for the
present analysis.

Using Egs. (12) we obtain from Eq. (13)

n e‘ﬁEﬁJQ_f
Py~ (14)

s M

0 .
> nge_BE(rQ;f

o=1

To avoid computation of the full partition function [denomi-
nator of Eq. (14)] it is advantageous to compute probability
ratios of two states s and s,

/= 32 f
P _ &( 2, ) LA e -0 ﬁ( 2y ) BE-E)
PSI Ngr Q I, Ngr Q

s s

(15)

Thus the probability ratio of two states depends on three
factors: Their energy difference E?—ES,, the ratio of degen-

eracy factors n,/ny, and the ratio of mean eigenfrequencies
QO /1Q,.

0
The Boltzmann factor e #5s~E5) gives preference to states
with a low energy. For low temperatures it will be the most
dominant factor but it becomes less important for higher
0o .0
E—E)) ~ 1.

temperatures when kpT> E?,—E? and e~ A

According to Eq. (11) the degeneracy factor assigns a
large statistical weight to states with more particles on inner
shells. As an example, for N=27, we obtain 7(ys2)/123 4)
=%=l/ 50. One can see that the configuration with only
two particles on the inner shell is suppressed due to a lower
degeneracy factor contrary to the states with an inner shell
consisting of four particles, see also Table III. The reason is
that there exist more combinatorial possibilities to construct
configurations when the difference between the single shell
occupation numbers is small. For N=31 (Table V) this ratio
can be even larger. This shows that (even for low tempera-
tures) this factor can strongly influence the occurrence prob-
abilities.

In the MD simulations we observe several states with the
same shell configuration but different energies. Their energy
difference can be as large as between states with different
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FIG. 4. (Color online) Spectrum of the eigenfrequencies for the
nine states shown in Table IV. The top figure shows the lowest
modes in more detail.

configurations (cf. Table I). In Eq. (13) all states with the
same shell configuration are added with the same degeneracy
factor.

Let us now consider the effect of the mean eigenfre-
quency, i.e., the effect of the local curvature of the potential
energy surface. Written out explicitly, using Eq. (15), this
factor reads as

f
QS’ f il;llws’,i
o) T o)
’ _val

i.e., it is the inverse ratio of the products of the eigenfrequen-
cies. The main contribution here usually arises from the low-
est eigenfrequencies. This can be seen in Fig. 4 showing the
spectrum for the states of the cluster with N=31, x=0.8.
State number 7 has two very low eigenfrequencies (cf. Fig.
4, red arrow) which strongly increase its statistical weight
(see also Table IV).

For two states with the same shell configuration we have
ny=ng, and the probability ratio is only determined by their

TABLE IV. Same as Table III for N=31 and «=0.8.

State s Configuration AE?/ N 7R W

1 (27.4) 4.397858(8) 1 1

2 (27.4) 0.000008(7) 1 0.82
3 (27.4) 0.000035(8) | 1.7

4 (26,5) 0.001810(1) 2715 0.84
5 (26,5) 0.001850(9) 2715 1.4

6 (26,5) 0.002000(0) 27/5 5.3

7 (26,5) 0.002091(6) 2715 9.7

8 (25,6) 0.003583(7) 117/5 1.4

9 (25,6) 0.003586(7) 117/5 1.1
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FIG. 5. (Color online) Probability of the two metastable states
with configuration (23,4) compared to the ground state (24,3) for
the Yukawa ball with N=27. The inset shows the ratio of the prob-
abilities for states 2 and 3 from Table III at low temperatures. Al-
though state 3 has the same configuration and a higher energy the
probability of finding state 3 is higher for 7= 0.007 due to the effect
of the eigenfrequencies.

energy difference and eigenfrequencies. Even though a state
has a higher energy it can have a higher probability provided
it has a lower mean eigenfrequency. Figure 5 shows the ef-
fect for N=27, for the states listed in Table III. The physical
explanation of the eigenfrequency factor is very simple:
States with low eigenfrequencies have a broad (flat) potential
energy minimum and thus a larger phase-space volume of
attraction for the trajectories of N particles. Thus initially
randomly distributed particles will have a higher probability
to settle in a minimum with small ), compared to another
minimum (when the energies and degeneracy factors are
similar).

Because the harmonic approximation only describes a
minimum’s local neighborhood we mention that this could
overestimate the weight of states with broad minima and low
escape paths [12], which are not taken into account in this
approximation. This could be improved by changing the lim-
its for the position integration in Eq. (8) according to the
potential barrier height and the temperature. This was done
for 2D clusters in [19] but requires knowledge of the barrier
heights. This is not essential for the present analysis. Finally,
we note that the value of w; is sensitive to numerical errors
in the computation of the eigenvalues of the Hessians since
the mean eigenfrequency is a product of 3N -3 single values.
In the present results we estimate the error not to exceed 5%
which is sufficient for our analysis.

D. Analytical results and comparison with Monte Carlo
simulations

Let us now come to the results of the analytical model and
compare them to Monte Carlo simulations which were ex-
plained in Sec. II B. The MC results have first principle char-
acter, in particular, they are not restricted to the harmonic
approximation and fully include all anharmonic corrections.
For N=27 we additionally verified the MC results by a
Langevin dynamics simulation using the SLO algorithm of
[20]. Here the probabilities were obtained in an equilibrium
calculation with a simulation time 7= 105w51 by determining
the configurations at fixed time intervals.
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FIG. 6. (Color online) Analytical theory compared to MC results. The solid lines show the probabilities for the indicated configurations
as obtained from Eq. (13). The dashed lines neglect the statistical weight factor caused by the eigenfrequencies, i.e., here ;=1 for all states.
For N=27 the dashed-dotted lines indicate the results of Langevin dynamics simulations. Analytical results for the configurations (22,5) and
(35,5) are not available or too low to be apparent in the figure, respectively.

Results for three representative examples are shown in
Fig. 6. We chose N=27, k=0.6 and N=31, k=0.8 since these
will turn out to be close to the situation in the dusty plasma
experiments, see. Sec. V. As a third example we present data
for N=40 with Coulomb interaction. The input parameters of
the analytical model, i.e., details on the (metastable) states
are summarized in Tables III-V. In Fig. 6 we plot the occur-
rence probabilities as a function of temperature. This allows
us to specifically study the effect of the depth of the potential
energy minimum Eg. The latter effect should be dominant at
low temperature, leading to a relatively high probability of
the ground state. In contrast, this effect should become less
important at high temperature where the degeneracy factors
and the eigenfrequency ratio should play a decisive role for
the probabilities. This general trend is indeed observed in all
three cases.

TABLE V. Same as Table III for N=40 and k=0 (Coulomb
interaction).

State s Configuration AE? IN 7 W
1 (34,6) 12.150162(9) 1 1

2 (33,7) 0.001143(4) 34/7 2.3
3 (33,7) 0.001190(3) 34/7 2.8
4 (33,7) 0.001236(9) 34/7 8.3
5 (32,8) 0.001862(8) 561/28 13
6 (32,8) 0.001863(1) 561/28 3.5
7 (32,8) 0.003482(4) 561/28 6.7
8 (35.5) 0.004201(7) 6/35 5.2
9 (35.5) 0.004392(7) 6/35 32

For N=27, top left part of Fig. 6, the effects of the degen-
eracy factor and the mean eigenfrequencies act in opposite
directions. While the state with four particles on the inner
shell gains statistical weight by having a high degeneracy,
this effect is almost compensated by narrow minima and,
consequently, a low w,, cf. Table III. Therefore, this state
achieves comparable probability with the ground state (27,4)
only at high temperature, 7= 0.03 (in the MC simulation this
is observed only for 7=0.045). For the configuration (25,2)
the opposite is true. Here, the degeneracy is low and the
minima broad, but due to its high energy this configuration
has a nonvanishing probability only for high temperatures,
T=0.03. We did not find a stable state with configuration
(22,5).

The situation for N=31, top right part of Fig. 6, is differ-
ent. Here all metastable states have a higher degeneracy fac-
tor than the ground-state configuration. In addition all states
further gain statistical weight because of broad minima, ex-
cept for state s=4, cf. Table IV. Thus one should expect that
metastable states have a high probability even at low tem-
peratures. This is indeed observed in the model and the MC
simulations already below 7=0.02.

In the third case, N=40, bottom part of Fig. 6, we gener-
ally see the same trend. The metastable state (33,7) has a
high degeneracy and frequency factor, cf. Table IV, and thus
it becomes more probable than the ground state already for
T=0.01 (0.015 in the MC simulations).

Let us now compare the analytical and MC results more
in detail. Good agreement is found for N=31 up to T
~0.02, cf. full lines and symbols. For N=27 we find good
agreement between MC and the analytical theory for T
<0.012 but only if the effect of the eigenfrequencies is ne-
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glected, cf. dashed lines. With eigenfrequencies included the
theory shows deviations for low temperatures but better
agreement for higher temperatures. For the cluster with 40
particles we observe moderate agreement for the configura-
tions (34,6) and (33,7) up to T=0.015 whereas the deviations
from MC for the remaining two configurations are rather
large. This overall agreement is quite satisfactory keeping in
mind that the melting temperature of these clusters is typi-
cally below T=0.015 [21-23].

The reason for these discrepancies are due to the limita-
tions of our simple harmonic model (the good agreement
between the completely independent MC and Langevin MD
results for N=27, cf. top part of Fig. 6, confirms the reliabil-
ity of the simulations). Since the discrepancies are growing
with temperature, the main reason is probably the neglect of
anharmonic effects. In some cases, when the barriers of the
potential energy surface are low, these effects might already
occur at low temperatures. Changing the limits of allowed
particle motion in the integration of Eq. (8) may help to
reduce the deviations. A further reason for deviations from
MC results could be an insufficient number of stationary
states being taken into account. It is not clear if all stationary
states have been found (they were precomputed with MD
simulations) and used in the partition function. To ensure a
high probability we performed more than 10* independent
runs. For example, for the cluster with 40 particles we ob-
serve nine states, but it was difficult to identify the states
with five particles on the inner shell because they were found
only a few times and were energetically close. The larger
number of states given in [9] also suggests that we missed a
few. Nevertheless, the effect originating from these states
should give only a small statistical contribution to the prob-
abilities.

V. COMPARISON WITH DUSTY PLASMA EXPERIMENTS

In the experiments of Ref. [11] small dust crystals with
N=27 and N=31 were produced repeatedly in a high-
frequency discharge. The particles were trapped by a nearly
spherically isotropic confinement potential which was rap-
idly turned off and on. This allowed to repeat the crystal
formation frequently without changing the plasma param-
eters (screening and friction coefficients) and to compute
probabilities of stationary states (shell configurations) from
the occurence frequencies. To compare with the experiments
we first need to establish the relation of our system of units
to the experimental parameters. We use the temperature unit
kgTo=Eo=(aQ*/2)'* [in SI units E,=(aQ*/327°€)"?]
which depends on the trap parameter a:mw(z) and the dust
charge. Since the charge is not known very accurately the
errors could be rather large. With Z=2000e¢ and a=5.2
X 107! kg s72 given in [11], room temperature (300 K) cor-
responds to 7y, = 0.0015. Also, the experimental screening
parameter is known only approximately. From previous com-
parisons with simulations [10] it is expected to be in the
range of 0.5<k<1. Reference [11] reported measurements
on the probability of metastable states for two clusters with
N=27 and N=31 which we now use for comparison with the
MD and MC simulations and the analytical model. More
recent experimental results are presented in [18(a)].
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FIG. 7. (Color online) Langevin dynamics simulation for N
=27, k=0.6, and v=3.2. Horizontal lines indicate results of Sec.
III B, Fig. 3.

A. MD results vs experiment

We start with the molecular dynamics simulations since
they model a situation which is closest to the experiment. In
contrast to the experiment which is performed at room tem-
perature, our simulations correspond to a Langevin dynamics
simulation at 7=0 (the system is cooled to almost zero ki-
netic energy). We have verified the influence of the final
temperature by performing additional Langevin simulations
for the cluster with 27 particles and k=0.6 with temperatures
up to 7=0.0035 (Fig. 7) which is more than 2 times the
experimental temperature. Apart from a finite temperature
the simulations were done in the same way as explained in
Sec. II, but with a predefined simulation time. For high tem-
peratures one must pay attention to the time after which the
configuration is determined since then transitions between
states can easily occur. This can be seen in Fig. 6 where for
T>0.01 metastable states have a nonvanishing probability.
In our Langevin simulations we used a simulation time of
tend=400w61, which corresponds to 7.,q= 10 s for a dust par-
ticle mass of m=3.3X10"'% kg. We find no systematic de-
viation from the results at zero temperature. The slight de-
viations for the configurations (23,4) and (24,3) are probably
due to the insufficiently long simulation time with the same
explanation as given at the end of Sec. III B. We thus con-
clude that for the present analysis an MD simulation without
fluctuations and cooling towards zero temperature is ad-
equate.

Our data for comparison with the experimental results are
shown in Figs. 2 and 3. The friction parameter in the experi-
ments is expected to be in the range v=3-6 [11]. This means
the system is overdamped and any value above v=2 will not
change the results significantly, cf. Fig. 2. So in Fig. 3 we
used a value of 3.2. The MD simulations agree well with the
experiment in the case of screening parameters in the range
0.6 <k<0.8 (for N=31) and 0.4<k<0.6 (N=27), for de-
tails cf. Table VI. The lower screening parameter in the latter
case is a consequence of the lower plasma density in the
experiment, compared to the conditions under which the
cluster with 31 particles was produced. This was also found
in the MD simulations performed in [11]. The present simu-
lations, being much more extensive, confirm these results.
We may conclude that this comparison allows us to deter-
mine the screening parameter in the experiment.
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TABLE VI. Comparison of experimental results for N=27 and N=31 with MD and MC simulations (MC
results are for the two temperatures 7=0.02 and 7=0.04). Also shown are the results of the analytical model
(“AM”) for T=0.02 and with the Boltzmann factor being neglected (T— ). For N=27 (N=31) the simula-

tion results are shown for k=0.6 (k=0.8).

N=27 P(24,3) P(23,4) P(25,2)
Experiment 0.46*+0.14 0.46=0.14 0.08 =0.06
MD 0.46 0.53 0.01
MC(0.02) 0.56 0.43 0.01
MC(0.04) 0.43 0.45 0.04
AM(0.02) 0.67 0.33 0.00
AM() 0.12 0.64 0.24
N=31 P(27,4) P(26,5) P(25,6)
Experiment 0.35x0.10 0.62+0.13 0.03+0.03
MD 0.30 0.59 0.11
MC(0.02) 0.40 0.55 0.04
MC(0.04) 0.33 0.50 0.14
AM(0.02) 0.44 0.53 0.03
AM() 0.02 0.60 0.38

B. Analytical and MC results vs experiment

A comparison of the analytical model and the MC simu-
lations with the experiment is disappointing. From Fig. 6 it is
evident that at room temperature the ground states have al-
ways a probability of almost 100% which is in striking con-
trast to the experiment and the MD results. This is not sur-
prising since the dust comprises a dissipative system and the
clusters are created under nonequilibrium conditions. In con-
trast, both Monte Carlo and the model are based on the ca-
nonical partition function and assume thermodynamic equi-
librium. Thus, at first sight, there seems to be no way to
explain the experiment with our analytical model or with
Monte Carlo methods. However, this is not true. As we will
show below, there is a way to apply equilibrium methods to
the problem of metastable states.

C. Time scales of the cluster dynamics

Let us have a closer look at the nonequilibrium dynamics
of the cluster during the cooling process. It is particularly
interesting to analyze on what time scales the different relax-
ation processes occur. In a weakly coupled plasma there are
three main time scales, e.g., [24,25]: first, the buildup of
binary correlations which occurs for times shorter than the
correlation time 7., which is typically of the order of the
inverse plasma frequency [26]. Second, the relaxation of the
velocity distribution towards local equilibrium due to colli-
sions, for 7., <r<t,, (kinetic phase) and third, hydrody-
namic relaxation, ., <?<t,y4. This behavior has so far not
been analyzed for the strongly correlated Yukawa clusters.

To get first insight, the quantities of central interest are the
kinetic energy and the velocity distribution function f(v,?) of
the cluster particles. These quantities are easily computed in
our MD simulations of the cooling process, as explained in
Sec. III. To obtain the velocity distribution we performed 420

runs with different randomly chosen initial conditions and
collected the data for each time step. The results for the
kinetic energy evolution and for f(v,,?) at six different times
are shown in Fig. 8, parts (a)—(f), the other velocity compo-
nents show the same behavior. The solid curves indicate the
best fit to a Maxwellian, the obtained “temperatures” are
shown in Fig. 8(g) by the crosses.

We observe four main relaxation stages. Stages two to
four are analogous to the ones discussed above. However,
there is an additional stage at very short times which is due
to strong friction effects in the present system.

(1) 0=<r=<0.1, initial stage: A rapid thermalization of the
initial randomly chosen velocity distribution f;, is observed
which is due to strong friction in this overdamped system.
This leads to formation of a Maxwellian distribution even
before the particles substantially “feel” the confinement po-
tential and binary forces.

(2) 0.1=r=0.5, correlation buildup: Rapid particle accel-
eration is observed which accompanies the build up of binary
correlations in the initially random (uncorrelated) particle
system. This is also seen in the appearance of superthermal
particles, see Fig. 8, parts (b)—(d). This behavior is typical for
any rapid change of the interparticle forces and proceeds on
scales of the order of the correlation time, e.g., [27-29].

(3) 0.5<r<1.3, competition between correlations and
dissipation: The kinetic energy increase saturates and cooling
starts. This means, at =1 correlation build up is finished
and dissipation due to neutral gas friction dominates the be-
havior.

(4) t>1.3, local equilibrium: The mean kinetic energy
decreases approximately exponentially, i.e., (Ey,)(f) <e™>"
where the decay constant is found to be y=0.65=v/5.

The behavior on the last stage resembles a single (Brown-
ian) particle in a dissipative medium where 7 is the velocity
relaxation rate corresponding to a relaxation time of 7.
=y'=1.54. In case of Brownian particles, the velocity dis-
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FIG. 8. (a)—(f) Velocity distribution function f(v,,?) for different
times [(a) r=0.1, (b) t=0.2, (c) t=0.4, (d) t=1.0, (e) t=2.0, (f) ¢
=3.1, as indicated in (h) by the vertical dashed lines] for N=27,
k=0.6, v=3.2. Solid lines show the best Maxwellian fit. The initial
velocity distribution at =0 is chosen randomly and thermalizes
rapidly until 7=0.1. (g) Averaged kinetic energy as a function of
time. Crosses denote the averaged kinetic energy obtained from the
best fit using the equipartition theorem. The distributions are aver-
aged over 420 MD runs.

tribution rapidly relaxes towards a Maxwellian for r=<1,. At
early times high velocities are efficiently suppressed by the
high damping coefficient. The particles are then being accel-
erated towards the center of the trap and increasingly interact
with each other giving rise to a nonthermal velocity distribu-
tion. The subsequent evolution towards a Maxwellian is evi-
dent in Figs. 8(d)-8(f) which is established around ¢=2.5.

This allows us to conclude that, after an initial period
(phases 1-3), the cluster has reached an equilibrium velocity
distribution and the subsequent cooling process, ultimately
leading to freezing into a spherical Yukawa crystal, is well
described by local thermodynamic equilibrium: The time-
dependent velocity distribution is given by f(v,?)
~exp(—#l}z([)) with kgT(1)=2(E\;,)(1)/3. Thus, the system
evolves from one equilibrium state to another which differ
only by temperature.

D. Application of equilibrium theories to the probability
of metastable states of Yukawa balls

Based on the results of Sec. V C, we expect that equilib-
rium methods such as Monte Carlo or our analytical model
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are applicable to the final (fourth) relaxation stage. Thereby
one must use the equilibrium result for the current tempera-
ture T(¢). Using temperature-dependent results such as in
Fig. 6, allows one to reconstruct the time dependence of
various quantities from the known dynamics of the kinetic
energy: T(1)="T(t,)e 27 e,

Now, the key point is that this local (time-dependent)
Maxwellian is established long before the particles are in a
strongly coupled state, i.e., the potential energy U of the trap
and of the pair interaction does not exceed the thermal en-
ergy. For example, at r=t,,, the temperature is around 0.15
which is about a factor 100 higher than room temperature
and one order of magnitude higher than the freezing point. In
case of very rapid cooling beyond the freezing point the par-
ticles will settle (with a certain probability) in the stationary
state “s” and will not have time to escape it since further
cooling removes the necessary kinetic energy (i.e., the es-
cape probability will be low). This means that the decision
about what stationary state the system will reach is made at a
time when the system temperature is close to the melting
temperature.

Using this idea we compute the probability of metastable
states from Monte Carlo for two temperatures 7=0.02 and
T=0.04, cf. Fig. 6 (at the higher temperature, due to inter-
shell transitions, shell configurations can be identified only
with an error of about 8%). We also calculate the probability
at T7=0.02 within the analytical model. Finally we consider
the high-temperature limit which is obtained by neglecting,
in the probability ratios, the Boltzmann factor. The corre-
sponding results are presented in Table VI. The overall
agreement with the experiment is much better than the re-
sults for room temperature which confirms the correctness of
the above arguments. Evidently, the Boltzmann factor is cru-
cial and cannot be neglected, cf. last lines in Table VI. The
best results are observed for temperatures around 7=0.04
which is about 2 to 3 times higher than the melting tempera-
ture where the system is in the moderately coupled liquid
state. This shows that it is indeed possible to predict, at least
qualitatively, the probabilities of metastable states in dissipa-
tive nonequilibrium Yukawa crystals within equilibrium
models and simulations. This is possible in the overdamped
limit as is the case in dusty plasmas.

VI. DISCUSSION

In summary we have presented simulation results for
Yukawa balls with three different numbers of particles and a
broad range of screening parameters and damping coeffi-
cients. It was shown by extensive molecular dynamics and
Langevin dynamics simulations that the cooling speed
(damping coefficient) strongly affects the occurrence prob-
abilities of metastable states even if the interaction and the
confinement remain the same. This is similar to the liquid
solid transition in macroscopic systems where rapid cooling
may give rise to a glasslike disordered solid rather than a
crystal with lower total energy. The same scenario is also
observed in the present finite crystals. While slow cooling
leads predominantly to the lowest energy state, strong damp-
ing gives rise to an increased probability of metastable states.
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These states may have an up to 5 times higher probability
than the ground state, which is fully consistent with the re-
cent observation of metastable states in dusty plasma experi-
ments [11]. These metastable states are not an artefact of an
imperfect experiment or due to fluctuations of experimental
parameters, but are an intrinsic property of finite Yukawa
balls.

Furthermore, we showed that screening strongly alters the
results compared to Coulomb interaction. Generally in-
creased screening leads to a higher probability of states with
more particles on inner shells due to the shorter interaction
range. An analytical theory for the ground-state density pro-
file of a confined one-component Yukawa plasma [30,31]
also showed that decreasing the screening length (increasing
k) leads to a higher particle density in the center of the trap,
which would correspond to a higher population of inner
shells in our case.

We presented an analytical model based on the canonical
partition function and the harmonic approximation for the
total potential energy. This model allowed for a physically
intuitive explanation of the observed high probabilities of
metastable configurations. The Boltzmann factor (which al-
ways favors the ground state relative to higher lying states),
competes with two factors that favor metastable states: The
degeneracy factor [favoring states with more particles on the
inner shell(s)] and the local curvature of the potential mini-
mum. Low curvature (low eigenfrequency) corresponds to a
broad minimum and a large phase-space volume attracting
particles. Among all normal modes the dominant effect is
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due to the energetically lowest modes. The thermodynamic
results from Monte Carlo simulations and the analytical
theory are in reasonable agreement with each other, at low
temperatures, as expected. For higher temperatures anhar-
monic effects such as barrier heights will be equally impor-
tant.

It was shown that in thermodynamic equilibrium the
abundances of metastables are much lower than observed in
the dusty plasma experiments at the same temperature. The
reason is that, in equilibrium, the particles are given infi-
nitely long time to escape a local potential minimum and
they always will visit the ground state more frequently than
any metastable state. In contrast, in the limit of strong damp-
ing the particles are being trapped in the first minimum they
visit. Thus, the decision about the final stationary state is
being made early during the cooling process, when the tem-
perature is of the order of two to three times the melting
temperature. Therefore, equilibrium theories without dissipa-
tion may be successfully applied to strongly correlated and
strongly damped nonequilibrium systems. A systematic deri-
vation from a time-dependent theory is still lacking and will
be presented in a forthcoming paper.
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