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One of the fundamental eigenmodes of finite interacting systems is the mode of uniform radial
expansion and contraction—the breathing mode (BM). Here we show in a general way that this mode
exists only under special conditions: (i) for harmonically trapped systems with interaction potentials of the
form 1=r� (� 2 R�0) or log�r�, or (ii) for some systems with special symmetry such as single-shell
systems forming platonic bodies. Deviations from the BM are demonstrated for two examples: clusters
interacting with a Lennard-Jones potential and parabolically trapped systems with Yukawa repulsion. We
also show that vanishing of the BM leads to the occurrence of multiple monopole oscillations which is of
importance for experiments.
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Strongly correlated finite systems are of high current
interest in many fields. Examples are atomic clusters, e.g.,
[1,2], and externally confined systems interacting by re-
pulsive potentials, such as atomic Bose condensates or
strongly interacting Fermi gases [3,4], ion crystals in traps
[5], dusty plasma crystals, e.g., [6,7], or electrons in quan-
tum dots [8–10]. The response of these systems to small
external perturbations is fully determined by its collective
excitations. Among those, the radial expansion and con-
traction—the monopole oscillation (MO)—is particularly
important since it can be easily excited selectively by
variation of the confinement [11] or by applying external
fields [12]. The corresponding frequency!MO can often be
precisely measured and may serve as a sensitive indicator
of intrinsic system properties including the form of the pair
interaction, the trap geometry [4], or the screening length
and particle charge in complex plasmas [11].

On the theory side, the collective modes are successfully
analyzed within continuum models, e.g., [13,14]. These
models are applicable to the gas or fluid phases of classical
or quantum systems where correlations are weak or mod-
erate. In the strongly correlated crystalline state where the
individual particle positions ri become separated, such
models are questionable. Nevertheless, frequently a MO
is associated with the oscillation of the mean square radius,
R2�t� � N�1P

iri�t�
2, [11,15,16]. In three-dimensional

(3D) systems with Coulomb interaction and harmonic
confinement with frequency !0 this MO has the frequency
!MO �

���
3
p
!0, independent of N, e.g., [13,15]. In har-

monically confined 2D systems, also a universal
(N-independent) MO was observed if the interaction is a
repulsive power law, �1=rn�n � 1; 2; . . .�, or logarithmic
[16]. For other interactions, !MO is N dependent [17].

On the other hand, the response of such a strongly
correlated finite system to small perturbations is fully
determined by its normal modes. Among those, the mode
of uniform radial expansion and contraction, the breathing

mode (BM), is most similar to the MO and both are often
used synonymously.

This common identification of the breathing mode with
the monopole oscillation assumes that a BM exists always,
independently of the confinement and for any pair inter-
action. In this Letter we show, by a general direct analytical
investigation, that this assumption does not hold for
strongly correlated finite classical systems. We prove that
in fact a BM exists only in two classes of systems: (i) in
parabolically trapped systems of any dimension with
power law or logarithmic pair interaction, and (ii) in
some highly symmetric systems, for arbitrary pair interac-
tion. In all other cases, any normal mode deviates from the
BM. As a consequence, then there exist several monopole
oscillations with different frequencies.

General existence conditions of the BM.—We consider a
d-dimensional, classical system of N identical particles
with arbitrary pair interaction v�r� described by the
Hamiltonian

 H �
XN
i�1

m
2

_r2
i �

XN
i�1

��jrij� �
1

2

XN
i;j�1
j�i

v�jrijj�

|����������������������{z����������������������}
U�r� with r2RdN

: (1)

The included confinement potential � is isotropic but
completely general otherwise and may also be equal to
zero. We assume the existence of a stable configuration
(ground state or metastable state) r� � �r�1; r

�
2; . . . ; r�N� 2

RdN defined by (
P0

indicates l � i)

 0 � riU�r�jr�r� �
�0�jr�i j�
jr�i j

r�i �
XN
l�1

0 v0�jr�ilj�
jr�ilj

r�il; (2)

from where the normal modes are excited. For a general
normal mode analysis we use the eigenvalue equation

 �mr̂ �H r̂; (3)
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which contains the positive semidefinite Hessian matrix
H � �rirjU�r�jr�r��i;j�1;...;N . Accordingly, � � !2 � 0
is the eigenvalue connected with the mode frequency !,
and r̂ is the eigenvector containing the displacement vec-
tors of all particles within the mode.

To obtain the existence conditions of the BM, we first
rearrange Eq. (3) by evaluating the Hessian matrix H ,
using the isotropy of � and the distance dependence of v,
which yields, for each component i 2 1; . . . ; N,
 

�mr̂i �
XN
j�1

H ijr̂j

�
�0�jr�i j�
jr�i j

r̂i �
�r�i 	 r̂i�r�i
jr�i j

3 
jr�i j�
00�jr�i j� ��

0�jr�i j��

�
XN
l�1

0�v0�jr�ilj�
jr�ilj

r̂il �
�r�il 	 r̂il�r�il
jr�ilj

3 
jr�iljv
00�jr�ilj�

� v0�jr�ilj��
�
: (4)

Now we insert an eigenvector of the BM given by r̂ / r�

(the proportionality constant cancels) and obtain

 �mr�i � �00�jr�i j�r
�
i �

XN
l�1

0

v00�jr�ilj�r
�
il: (5)

These are the N existence equations of the BM, which just
have the meaning that the linearized force on each particle
from the confinement and the pair interactions has to be
purely radial and uniform (proportional to r�i ). To find their
solutions we separate them into the two conditions. First,
radiality is equivalent to

 0 � r�i �
XN
l�1

0

v00�r�il�r
�
il; (6)

which requires
P0

lv
00�jr�ilj�r

�
il � sir�i with arbitrary coeffi-

cients si. These radial equations have two classes of solu-
tions: (R1) the particle configuration is of special
symmetry with coefficients si determined by the configu-
ration, e.g., rotational symmetry with respect to all r�i . (R2)
the pair interaction v�r� is of specific form. This form can
be obtained by adding a multiple of the tangential compo-
nents of Eq. (2) to Eq. (6). The result is an equation for v:
v00�r� � ���� 1�v0�r�=r, where � is an arbitrary real
number. Its solutions are v�r� � 1=r� (� � 0) and v�r� �
log�r� (corresponding to � � 0), and these solutions fulfill
Eqs. (6) independently of the particle configuration with
coefficients given by si � ��� 1��0�jr�i j�=jr

�
i j.

So far we used only the requirement of radiality. To
fulfill the existence equations (5) the radial solutions
(R1) and (R2) also have to fulfill the conditions of uni-
formity which follow by multiplying (5) with r�i ,

 �m � �00�jr�i j� � si: (7)

These conditions also have two kinds of solutions: (U1) the
configuration has another special symmetry, e.g., single-
shell configuration with si independent of i. (U2) in case of

the radial solution (R2) a configuration-independent equa-
tion for the confinement potential��r� is obtained by using
the corresponding coefficients si: �m � �00�r� � ���
1��0�r�=r. Its solutions are
 

��r� �
�m

2�2� ��
r2 � cv�r�; � � �2; (8a)

��r� �
�m
2
r2 log�r� � cr2; � � �2 (8b)

where � is the power of the pair interaction and c is an
arbitrary constant. Consequently, there are two basically
different possibilities for the existence of a BM:

Universal breathing mode (UBM).—The previous
analysis shows that a configuration- and N-independent
universal BM exists in the case of harmonically confined
systems, Eq. (8a), ��r� � m!2

0r
2=2, with particles inter-

acting via potentials v�r� proportional to 1=r� or to log�r�.
For these cases the breathing frequency is independent of
N and given by !BM �

�������������
2� �
p

!0 and !BM �
���
2
p
!0,

respectively. For interaction potentials proportional to r2,
Eq. (8b), the confinement has to be of the form r2 log�r�,
where the prefactor determines the breathing frequency
!BM. In case of particle(s) located in the trap origin the
confinement is modified containing an additional term
cv�r�, Eq. (8a), or cr2, Eq. (8b). These results are valid
for any real � and any dimension and include the result of
Ref. [16] as a special case.

Further we conclude that no UBM exists for all expo-
nential potentials (such as Yukawa, Morse, etc.) or non-
monotonic potentials (e.g., Lennard-Jones).

Nonuniversal breathing mode (NUBM).—A second
class of solutions of Eqs. (5), the configuration dependent
solutions, exists in highly symmetric configurations. For
instance, 2D equally spaced single-shell systems or 3D
single-shell systems, which form platonic bodies (with or
without a particle in the center), fulfill Eqs. (5) for any v
and �—in these cases the system looks the same from
every particle’s view. Thus, for every i 2 f1; . . . ; Ng
Eqs. (5) are identical. Then, since no direction is preferred,
the sum is proportional to r�i , and a unique value � � 0
exists fulfilling the existence equations. The resulting BM
is nonuniversal, i.e., !BM depends on N.

Deviations from a BM.—We will now verify our pre-
dictions by a numerical normal mode analysis. To this end,
we use the ground state configurations of Lennard-Jones
and harmonically confined Yukawa systems for different N
[18,19] and calculate all eigenmodes. For each mode we
analyze the deviations from a BM, i.e., deviations from the
proportionality r̂ � cr�. The first type of deviation arises if
r̂i � cir�i , with different ci for different particles (radial,
but nonuniform mode). More pronounced deviations exist
if there is no proportionality for all particles, i.e., there
exist finite tangential velocity components (nonradial
mode). Finally, the strongest deviations correspond to the
case where the mode is not radial and contains, in addition,
a positive number Nap of antiphase oscillating particles,
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i.e., these particles move inward while the majority move
outward and vice versa.

We will measure these deviations by computing the
number Nap whereas radiality and uniformity will be mea-
sured by the distribution widths normalized to the mean
 

�r� jmax
i
�i;r�min

i
�i;rj=j ��i;rj with �i;r�

r̂i 	r�i
jr̂ijjr�i j

; (9a)

�u��max
i
�i;u�min

i
�i;u�= ��i;u with �i;u�

jr̂ij
jr�i j

: (9b)

If, for each mode, �r and/or �u are nonzero, no BM exists.
In this case we define the quasi-BM (QBM) as the mode
with the smallest of these deviations. Two examples of
such a QBM are shown in Fig. 1 together with a perfect
BM.

Unconfined 3D Lennard-Jones (LJ) systems.—First we
examine the breathing-type modes of unconfined systems
with LJ interaction

 v�r� � 4�
��
�
r

�
12
�

�
�
r

�
6
�
; (10)

which is of relevance, e.g., for molecules and atomic
clusters [1,2]. While the eigenvalues of the corresponding
modes are dependent on the chosen energy and length
scale, the eigenvectors are not. Thus, a systematic calcu-
lation of �r and �u in dependence on N can be performed.
The results are shown in Fig. 2 where �r, �u, and Nap are
plotted vs N in the range from 3 to 150 particles. One
clearly sees that most of the systems show substantial
deviations from radiality and uniformity. The smallest
deviations are observed for N � 55, 135, 147, which are
highly symmetric multiple shell systems with full icosahe-
dral symmetry [18] (see dash-dotted lines): the values are
�r � 0, Nap � 0, and �u � 0:2, 0.24, 0.23, respectively.
Thus we confirm that LJ systems do not possess a UBM,
and a NUBM exists only for N � 3, 4, 6, 13 (see dashed
lines in Fig. 2) and the trivial case N � 2. These particle
numbers correspond to single-shell configurations, which
are either planar (N � 3) or form platonic bodies: tetrahe-
dron (N � 4), octahedron (N � 6), and icosahedron with a
central particle (N � 13). Other platonic configurations do
not show up.

Parabolically confined Yukawa systems.—As a second
example of broad practical interest, e.g., for spherical dusty

plasmas and colloidal systems, we consider the breathing-
type modes in a parabolically confined one-component
Yukawa system,

 v�r� �
Q2

r
e��r; ��r� �

m
2
!2

0r
2; (11)

using as length scale dc � �2Q2=m!2
0�

1=3 —the stable dis-
tance between two charged particles in the absence of
screening [7]. For �! 0 (Coulomb system), a universal
breathing mode is observed, in agreement with the pre-
vious analysis; see Fig. 1(a). In contrast, for � > 0 our
simulations confirm that no UBM exists [20]. Two typical
examples of the QBM of 2D Yukawa systems are presented
in Fig. 1 clearly showing deviations from radial and uni-
form motion. While in Fig. 1(b) still a purely radial motion
is observed, in Fig. 1(c), the mode closest to the BM shows
striking deviations, including several particles moving in a
tangential direction.

Let us now analyze the behavior of the QBM as a
function of the screening length. Surprisingly, a small
variation of � leads to an irregular behavior of �r and/or
�u with very sharp peaks; cf. Fig. 3 showing the properties
of the QBM for the example N � 40 in 2D and 0  �dc 
2. The origin of the peaks is easily understood: they arise
whenever the QBM switches from one eigenmode to an-
other. I.e., one mode having the smallest deviations from
the BM in a certain � range loses this role to another mode
at some critical value of the screening parameter. This can
be seen in the inset of Fig. 3 showing the QBM peak in the
region 1:965  �dc  2.

a) b) c)

FIG. 1. QBM of harmonically confined 2D Yukawa systems.
(a) perfect BM for N � 40 and �dc � 0. (b) purely radial but
nonuniform QBM for N � 16 and �dc � 20:0, (�r � 0, �u �
1:1, Nap � 0). (c) nonradial and nonuniform QBM for N � 40
and �dc � 1:99, (�r � 2:77, �u � 2:11, Nap � 4). The
dashed lines mark the shells.
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FIG. 2. QBM of unconfined LJ vs particle number. (a) Devia-
tions �r from radiality. (b) Deviations �u from uniformity.
(c) Number Nap of antiphase oscillating particles. Cases of
NUBM are marked by dashed lines (see also Fig. 4) and the
QBM of the icosahedral symmetric systems by dash-dotted lines.
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Furthermore, we consider the NUBM of LJ and Yukawa
systems more in detail. All existing BM (for a single value
of �) due to highly symmetric configurations are shown
in Fig. 4. Note that, in the case of harmonically trapped
Yukawa systems, the values of N exhibiting a NUBM
depend on � and on the dimensionality. Further, the simu-
lations confirm that the frequencies are nonuniversal,
i.e., depend on N.

Finally, let us now return to the monopole oscillation
discussed in the introduction. Considering small harmonic
particle oscillations with eigenfrequency ! around the
stationary positions the mean square radius becomes
R2�t� � R2

0 �
2�
N sin!t r� 	 r̂�O��2�, where � is a mea-

sure for the oscillation amplitude. If the BM exists, the d 	
N-dimensional vectors r̂BM and r� are parallel and there
exists a MO with !MO � !BM, which is unique, owing to
the orthogonality of all eigenvectors. In contrast, if no BM
exists, generally many eigenvectors r̂�k� with frequency !k
will have a nonvanishing projection on r�, each giving rise
to a MO with different frequencies !�k�MO � !k and ampli-
tudes. In this case, an external perturbation of the system
that excites radial particle motions (e.g., by rapid change of
the trap frequency) will excite all those monopole oscil-
lations at once. The resulting complex spectrum is a finger-
print of the internal properties of the system, in particular,
the form of the pair interaction and the confinement, and is
expected to be a sensitive experimental diagnostic of
strongly correlated systems. This should be valuable for
experiments with a variety of strongly correlated systems
in traps—ranging from colloidal systems and dusty plas-
mas over nanoparticles and clusters to atomic and molecu-
lar Bose and Fermi gases.

In summary, we have derived the general existence
conditions for the BM in strongly correlated finite classical
systems of any dimension with arbitrary confinement and
interaction potential. The existence of a BM is restricted to
a small class of systems: (i) parabolically confined systems
with a power law or logarithmic interaction potential, or

(ii) particular, highly symmetric configurations, indepen-
dently of the interaction. Systems with exponential or
nonmonotonic potentials (including Yukawa, Morse, or
Lennard-Jones systems) not having such a special configu-
ration do not possess a BM. In these systems all normal
modes exhibit nonuniform and/or nonradial motion which
has been illustrated for several representative examples.
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FIG. 3 (color online). Deviations �r (solid line) and �u
(dashed line) of the QBM for harmonically confined 2D
Yukawa systems with N � 40 vs screening strength �dc. The
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