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Structural Properties of Screened Coulomb Balls
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Small three-dimensional strongly coupled charged particles in a spherical confinement potential
arrange themselves in a nested shell structure. By means of experiments, computer simulations, and
theoretical analysis, the sensitivity of their structural properties to the type of interparticle forces is
explored. While the normalized shell radii are found to be independent of shielding, the shell occupation
numbers are sensitive to screening and are quantitatively explained by an isotropic Yukawa model.
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The recently discovered Coulomb balls [1] are an inter-
esting new object for studying strongly coupled systems.
Coulomb balls consist of hundreds of micrometer sized
plastic spheres embedded in a gas plasma. The plastic
spheres attain a high electric charge Q of the order of
several thousand elementary charges and arrange them-
selves into a highly ordered set of nested spherical shells
with hexagonal order inside the shells. Coulomb balls are a
special form of 3D-plasma crystals [2–4]. The formation
of ordered clusters with nested shells was also observed in
laser-cooled trapped ion systems, e.g., [5,6], and is ex-
pected to occur in expanding neutral plasmas [7,8].

The same kind of ordering was found in molecular
dynamics (MD) simulations, e.g., [9–11], and references
therein. In particular, the transition to the macroscopic
limit [12,13], the symmetry properties of the individual
shells including a Voronoi analysis [10] and metastable
intrashell configurations [11,14] have been analyzed. Very
large systems of trapped ions show a transition to the
crystal structure of bulk material, which was measured
by laser scattering [15].

Although the shell structure of ion crystals is quite well
understood in terms of simulation results, these systems do
not yet allow for systematic experimental studies of the
structure inside the shells and the detailed occupation
numbers of individual shells. The advantage of studying
Coulomb balls is the immediate access to the full three-
dimensional structure of the nested shell system by means
of video microscopy. The tracing of each individual parti-
cle is ensured by the high optical transparency of the
system, which results from particle diameters of typically
5 �m at interparticle spacings of 500 �m. Compared to
atomic particles, the very high mass of the microparticles
used here slows down all dynamic phenomena to time
scales ranging from 10 ms to seconds. Therefore, studies
of Coulomb balls complement investigations of ion crys-
tals, where dynamical studies are difficult.

Coulomb balls are in a strongly coupled state, i.e., the
Coulomb coupling parameter, � � Q2=akBT, where a is
the mean interparticle distance, attains large values (��
06=96(7)=075001(4)$23.00 07500
100). Contrary to ion crystals, where the particles interact
via the pure Coulomb force, the microparticles in a
Coulomb ball are expected to interact by a Yukawa type
pair potential, Vdd � �Q2=r�e�r=�D , which was verified
experimentally in complex plasmas [16]. Therefore,
Coulomb balls are characterized by two parameters, the
coupling parameter � and the Debye shielding length of the
plasma �D. It is the intention of this paper to study the
influence of shielding on the structure of Coulomb balls, in
particular, to pin down the differences from systems with
pure Coulomb interaction. This will be done by comparing
computer simulations with experimental results. At the
same time, a study of spherical crystals with Yukawa
interaction opens up an interesting new field which in a
natural way bridges the gap between the above mentioned
theoretical investigations of finite size Coulomb systems
and the theory of macroscopic Yukawa plasmas, e.g.
[17,18].

Experiment.—The experiment is described in detail in
Refs. [1,14,19], so here we only summarize the main
results from a systematic investigation of 43 Coulomb balls
consisting of 100 to 500 monodisperse and hence uni-
formly charged particles. All Coulomb balls were trapped
under identical experimental conditions. All of them had a
spherical shape and their diameter was in the range of 4–
5 mm. A typical experimental result for a cluster and its
shell structure is shown in the left part of Fig. 1. In all
43 Coulomb balls a similar shell structure was observed
and the shell radii Rs and the shell occupation numbers Ns
were measured. Further, from the pair correlation function
the typical mean interparticle distance was derived, which
for all N was close to a ’ 0:6 mm. The mean intershell
distance dwas found to be d � �0:86� 0:06�a, which is in
good agreement with local icosahedral ordering [9]. An
important experimental result is that the intershell distance
is constant over the whole Coulomb ball and implies a
constant average density of particles and ions, which is
equivalent to a parabolic electric potential well used for the
simulations below. A more detailed experimental verifica-
tion of the parabolic confinement well is described else-
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FIG. 2. Experimental (symbols) and MD-simulation (lines)
results for the shell radii of three-dimensional Coulomb balls
in units of the mean interparticle distance.

FIG. 1. Radial particle distribution for N � 190 given in cy-
lindrical coordinates. Left: experiment [1], right two figures:
MD-simulation results with Coulomb (� � 0), and Yukawa
(� � 1) potential. The shell occupation numbers are compiled
in Table I.
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where [19]. A different case with ‘‘self-confinement’’ of a
dust cloud in a strongly anharmonic potential was recently
discussed in [20].

Simulations.—For a theoretical explanation of the ex-
perimental results we have performed molecular dynamics
and thermodynamic Monte Carlo (MC) simulations using
the Hamiltonian
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Vdd�ri � rj�: (1)

We assume that the Coulomb balls consist of particles with
the same mass and charge and that a stationary state is
reached close to thermodynamic equilibrium. Furthermore,
the observed isotropic particle configuration suggests to
use an isotropic interaction potential. Screening effects are
included in static approximation using Debye(Yukawa)-
type pair potentials Vdd given above. In the simulations
we use dimensionless parameters, with lengths given in
units of the ground state distance of two particles, r0c,
defined in Eq. (2), hence in this Letter � � r0c=�D. In
experimental papers, � � a=�D is often used. In accor-
dance with the experiment on Coulomb balls [19] and
previous experiments and simulations on ion crystals
[17], we use a screening-independent confinement poten-
tial Uc�r� � m!2 � r2=2. As a result, in our model the
configuration of the Coulomb balls is determined by three
parameters: particle number N, screening parameter �, and
temperature T. Since experimental plasma densities and
temperatures are not precisely known, we have performed
a series of calculations for different values of � and T.
Furthermore, a wide range of particle numbers, up to N �
503, has been analyzed.

Results.—Consider first the theoretical ground state con-
figurations (T � 0) in the case of Coulomb interaction,
� � 0, which were obtained by classical MD simulations
using an optimized simulated annealing technique [11].
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Using about 1000 independent runs for each value of N
ensured that the ground state is reached. In addition, we
have performed MC simulations in the canonic ensemble
with a standard Metropolis algorithm, which allows for a
rigorous account of finite temperature effects. Both simu-
lations yield identical configurations at low temperature.
Figure 1 shows a comparison of MD simulation and ex-
periment for the case of N � 190 particles. In both cases
four concentric spherical shells are observed, which are the
result of a balance between confinement potential Uc and
interparticle repulsion Vdd.

For a more detailed quantitative comparison between
experiment and simulation we analyze the dependence of
the shell radii Rs on the cluster size N (Fig. 2). The
interparticle distance a serves as a common length scale
as it is accessible in experiment and simulation. There is an
overall increase / N1=3 of the experimental Rs for all shells
and all 43 analyzed clusters. Exceptions occur around
values of N where new shells emerge. The same behavior
is obtained from the MD simulations. Without any free
parameter a very good agreement of experimental radii and
Coulomb MD results (full lines) is observed, in particular,
concerning the absolute values, the slope and the equi-
distance of the shells. Further, these results hold also in
case of a Yukawa potential if � is small (dashed lines in
Fig. 2). Interestingly, the general scaling of the shell radii
in units of the interparticle distance a of weakly shielded
Coulomb balls / N1=3 is the same as for pure Coulomb
systems, such as ion crystals.

However, a marked difference between experiment and
simulations of pure Coulomb systems is observed for the
shell population numbers N1 . . .N4. Table I shows the shell
population numbers for various screening parameter � of a
Coulomb ball with N � 190 as obtained from MD simu-
lations and experiment. Clearly, for � � 0 the MD results
yield systematically more particles in the outer part of the
cluster than observed in experiment. Further, Table I shows
that, with increasing �, particles move from the outer shell
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TABLE I. Experimental (last column) and theoretical shell
configuration of the Coulomb ball N � 190. N1 . . .N4 denote
the particle numbers on the ith shell beginning in the center.

�! 0 0.2 0.3 0.4 0.5 0.6 1.0 Experiment

N1 1 1 2 2 2 2 4 2
N2 18 18 20 20 21 21 24 21
N3 56 57 57 58 58 60 60 60
N4 115 114 111 110 109 107 102 107
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inward. Interestingly, for � � 0:58 . . . 0:63, the simulations
yield exactly the same shell configuration as the experi-
ment. Therefore, the different population numbers may be
attributed to the influence of screening and hence weaken-
ing of the interaction potential.

To investigate this in more detail, the comparison was
extended to all 43 Coulomb balls. Because of their differ-
ent size and even different number of shells the systematic
differences in shell population of Coulomb and Yukawa
systems can be studied comparing the experimental results
and MD simulations. The result is shown in Fig. 3.
Coulomb and Yukawa simulations as well as the experi-
ment reveal an almost linear behavior of the shell popula-
tion of all shells as a function of N2=3. However, the
experimentally obtained population of the outermost shell
N4 is significantly smaller than the one of a Coulomb
system (solid line), whereas the inner shells show a sys-
tematically higher population. Interestingly, the Yukawa
MD simulations (dashed lines) show the same systematic
deviation from the Coulomb case. It is clearly found that
with increasing � particles move to inner shells. Hence, the
finding discussed for the Coulomb balls with N � 190 in
Table I holds generally. This tendency reflects the fact that,
from an energetic point of view, the higher population of
the inner shells becomes less costly, due to the shielding
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FIG. 3. Experimental (symbols) and simulation (lines) results
for the shell population of three-dimensional Coulomb clusters
at different values of � (see inset).
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than the occupation of the outermost shell, where the
confinement by the trap dominates the potential energy.

In more detail, we find that the outermost shell exhibits
the largest absolute change with � and it is, therefore, best
suited for a detailed comparison with the experimental
data, see Fig. 3. From a best fit to the experimental data,
we find a screening parameter �EXP � 0:62� 0:23. An
independent analysis for the other shells confirms this
result, e.g., the third shell, yields �EXP � 0:58� 0:43.
Determining the mean interparticle distance a from the
first peak of the pair distribution function �EXP translates
into an average Debye length �D=a � 1:54� 0:7.
Furthermore, as one can see in the right hand part of
Fig. 1, an increase of � leads to compression of the entire
cluster, which is due to the reduction of the potential Vdd.
The fact that more and more particles move from the outer
shells inward has the consequence that closed shell con-
figurations are already reached at a smaller number N	 of
total particles compared to N	c in the Coulomb case. While
for � � 0, the first closed shell is found at N	1 � 12 parti-
cles, for � * 4:7 the ground state of a cluster with 12 (and
11 as well) particles contains one particle in the center and
N	1 � 10. For � � 0:6 closure of the 2nd to 4th shell is
observed for N	2 � 54, N	3 � 135, N	4 � 271, whereas in
the Coulomb case N	2c � 57; 60 [10], N	3c � 154 [14] and
N	4c � 310 cf. also Fig. 2.

After analyzing the shell populations we now consider
the shell width. The larger roughness of the shells in the
experiments cf. Fig. 1, is attributed to small anisotropies of
the experimental confinement and finite depth resolution of
the imaging equipment as well as temperature effects.
While the measurements are at room temperature, the
MD simulations refer to T � 0. Therefore, we have ana-
lyzed the influence of temperature on the shell radii and
populations with the help of MC simulations. From the
results we conclude that the effect of temperature on the
shell configurations Ns is negligible for � � 0:6. At con-
stant finite T we find that an increase of � leads to a
reduction of shell roughness. Contrary to that, a tempera-
ture increase at elsewhere fixed parameters in fact leads to
a roughening of the shells proportional to

����
T
p

for the outer
shell and an even stronger effect for the inner shells. This
tendency will become evident from the analytical results
below.

Analytical results.—The main influence of screening on
Coulomb balls is readily understood with the help of
analytical results, which can be found for N � 2. First,
the ground state distance r0��� follows from minimizing
the potential energy U in Eq. (1):

e�r0r3
0

1� �r0

�
Q2

m=2!2 
 r3
0c: (2)

Equation (2) yields the two-particle distance, r0c, in an
unscreened system as a function of r0 and is easily inverted
numerically [21]. The ratio r0=r0c is always smaller than
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unity and monotonically decreasing with �, thereby con-
firming the above observation of screening-induced com-
pression of the Coulomb balls. Second, we analyze the
cluster stability by expanding the potential U in terms of
small fluctuations, y 
 r� r0, around the ground state, up
to second order: U�r� �U�r0� �

1
2U
00�r0�y2 
 m

4 �2y2.
This defines an effective local trap frequency �
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which allows us to estimate the width of the Coulomb ball
shells. Third, we compute the variance of the particle
distance fluctuations, �r, for particles in a parabolic po-
tential with frequency � at temperature T and obtain �2

r �
2kBT=�m�2� which is in agreement with our MC simula-
tions. This allows for two interesting conclusions: At con-
stant screening, the shell width grows with temperature as����
T
p

while screening reduces the shell width. One might be
tempted to conclude that increased screening makes parti-
cle transitions between neighboring shells less likely and
thus stabilizes the cluster against melting. However, the
opposite is true, because screening also reduces the dis-
tance between shells which is of the order of r0. The
relative importance of both tendencies can be discussed
in terms of the relative distance fluctuations, a critical
value of which determines the onset of radial melting
(Lindemann criterion).
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; �	2 � �2f2���: (4)

ur is related to an effective coupling parameter, �	2 which
depends on the interaction strength of two trapped parti-
cles—via the Coulomb-type coupling parameter, �2 

Q2=�kBTr0�, and on the screening strength—via the func-
tion f2���. f2 monotonically decreases with � (ur in-
creases), thus screening destabilizes the Coulomb balls.

Finally, these analytical results are closely related to
those for macroscopic homogeneous Yukawa systems,
e.g. [17,18]. This limit is recovered by replacing, in (3),
r0 by the mean interparticle distance a at a given density n,
a � �3=4�n�1=3. Then the local trap frequency becomes
�2 ! !2

pdf2���, showing that, in a Coulomb system, �

approaches the dust plasma frequency !pd whereas, in the

case of screening, the result is modified by a factor
������������
f2���

p
[22]. Also, the effective coupling parameter �	2 is in full
analogy to the macroscopic result [18].

In summary, we have presented a combined experimen-
tal, numerical, and theoretical analysis of small spherical
charged particle clusters. The excellent experimental ac-
cessibility of these systems has been demonstrated. The
structure of these clusters deviates from models with pure
Coulomb interaction and requires the inclusion of static
screening. For the particle number range N � 100 . . . 500,
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comparison with the MD and MC simulations has allowed
us to determine the screening parameter averaged over the
clusters as �D=a � 1:5. These Coulomb balls are repre-
sentative for finite Yukawa systems, combining shell prop-
erties observed in spherical Coulomb clusters with
screening effects found in Yukawa plasmas. Since the shell
occupation numbers have now been critically analyzed, our
results confirm earlier conclusions about the shell structure
of ion clusters, where such an analysis was not accessible
yet. The results are relevant for other strongly correlated
charged particle systems, such as crystal formation of
droplets in expanding laser produced plasmas, where
shielding becomes important.
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