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Few-particle clusters of spatially separated electrons and holes in vertically coupled two-dimensional quantum
dots are analyzed. As a function of interdot distance

�
, the inlayer interaction between electrons (and holes)

changes from Coulomb repulsion at large
�

to dipole repulsion of e-h pairs at small
�

. The change of the
structural properties (cluster shell configuration and symmetry) and energy with variation of

�
is investigated.

1 Introduction

Mesoscopic systems of a small number � of charged particles continue to attract increased interest due to their
unusual properties. In particular, they exhibit unique strong coupling phenomena which are of interest for dense
plasmas, ions in traps, dusty plasmas and semiconductor quantum dots. Of particular interest is the formation
of a mesoscopic Wigner crystal, e.g. [1] with nontrivial melting properties and potential applications to single-
electron control devices [2]. An even larger variety of phenomena is observed in coupled quantum dots such
as mesoscopic electron-electron bilayers, e.g. [3, 4], and coupled dots with spatially separated electrons and
holes. The latter system is of particular interest since here the interaction between the particles can be controlled
(changing from Coulomb to dipole) by variation of the interlayer separation � and crystallization may interfere
with exciton formation [5, 6] and Bose condensation.

In the present paper, we extend our previous investigations of few-particle e-h-bilayers [5, 6] to an analysis of
the ground state configurations. We demonstrate that, when the interlayer separation is varied, there may occur
one or several (depending on � ) structural transitions where the configuration symmetry or the shell structure
changes. Similarities with and differences to single-layer systems are explored.

2 Electron-hole bilayers. Model and results

Let us consider a system of two vertically coupled two-dimensional layers (quantum dots, QD) containing elec-
trons and holes, interacting through the Coulomb potential. In the classical case, the ground state of this system is
described by the Hamiltonian �����	��
���
�
�������
 , where � ����
�� is the Hamiltonian of a single-layer Coulomb
cluster whereas ������
 contains the attractive inter-layer particle interactions. In the following we focus on sym-
metric electron-hole bilayers (SEHB) where electron and hole numbers are equal, ��������
���� , electrons and
holes have the same mass, ������� 
!�"� , and the confinement potentials �$#&%�')(����
�� of both QDs are identical,
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Further, � is the distance between the planar layers, ?
8 ;

is the in-layer projection of the distance between two
particles, 0 is the particle charge, 3 4 the background dielectric constant and B C the harmonic trap frequency.
After introducing the length and energy scales, ? C � � A 0 1�� � 354 B 1C����	��
 , � C � 0 1�� 354 ? C , the transformations
 ?�� ? � ? C , � � � � � C , � � � � ? C�� allow us to rewrite the Hamiltonian in dimensionless form:

��� 6 G7 8,9�; =? 8 ; 

6 G7 8 ? 1 
 6HI7 8,9�; =? 8@; 


6HI7 8 ? 1 
 6 G7 8 6HI7 ; =K ? 18@; 
 � 1 L (2)

In the following all energies will be given per electron-hole pair excluding the dimensionless vertical electron-
hole coupling energy = � � (exciton binding energy) as it has no influence on the in-layer particle arrangement (this
is not true in the quantum case) but only assures exact vertical alignment of e-h pairs.

Computation of the classical ground state configurations. For the numerical analysis we used molecular
dynamics simulations (MD) with an adaptive stepsize controlled Runge-Kutta 4th order integrator. For any fixed
particle number � and interlayer distance � , the simulations started from a random initial configuration with
subsequent cooling to zero temperature.

For small (mesoscopic) clusters which are the sub-

Fig. 1 Energy difference between the two energetically low-
est shell configurations for ������� e-h pairs. At small

�
, the

ground state has the shell configuration ��������� which changes
around

�� "!$# �%� to the configuration �'&(�	)�� . The inset shows
the ground state configurations at

� �*��+ ��� (a) and
� ����+ ��&

(b).

ject of this paper the method rapidly converges. In
the case of several energetically close states, each
of the configurations was analyzed separately over
the whole range of ��E values. The results were ver-
ified by independent Monte Carlo simulations. For
the limiting cases of � �-, and � �/. , we found
exact agreement with the known single-layer energy
results for Coulomb [9] and dipole clusters [10], re-
spectively1.

The interesting property of the present system is
that, by varying the interlayer distance � , the in-
layer interaction changes from Coulomb repulsion,
for � �(021 = , to dipole repulsion, for � �(023 = ,
where 0 is the mean inter-particle distance in each
layer. In the intermediate range around � � 0 , in-
layer and intralayer correlations are of the same or-
der and the system exhibits three-dimensional be-
havior. From an analysis of the ground state config-

urations for many different particle numbers, in the whole range of � , we found that for certain e-h pair numbers� the ground state configuration changes with � , i.e. we observe structural transitions. We found the following
three different scenarios:
I) the ground state configuration does not depend on � , II) the two limits of independent layers ( � ��041 = ) and
strongly coupled layers ( � ��053 = ) have different configurations, characterized by different particle numbers on
the shells, III) in both limits, the same configuration exists, but in a transition region between both limits, another
groundstate configuration is observed.

Figs. 1 and 2 illustrate the cases II) and III) on the examples � � = . and � � = A , respectively. For ��� = . ,
only one transition takes place, close to �/� = (see table). At this point, the

� A D76 � ground state known from
a single-layer Coulomb cluster changes to the

�98 D�: � configuration found in a single-layer cluster with dipole-
dipole interaction [10]. In the limit of � �;. , the energies of both configurations vanish, but the ratio of the two
energies remains larger than one, � � A D76 � � � �98 D�: � � = L .�.�< , i.e. the configuration (3,7) remains stable. However,
the behavior for � � = A , is different, see Fig. 2. Here, we observe case III), i.e. at small � , the large-distance
configuration

�'8 D7= � reappears, while at intermediate d-values the
� < D�6 � configuration is more stable.

The physical explanation for the observed behavior is the following: the large � configuration is obviously that
of a single layer Coulomb cluster. On the other hand, with reduction of � , the correlation energy becomes purely
dipole-like and vanishes with � as � #&%+*,* � � �?> ��@ ��A [6]. Thus the total potential energy is dominated by the con-
finement energy and the ground state configuration by minimization of � #&%�')( . At finite � the confinement favors
large particle numbers in the central region (inner shell), as seen in both figures. Furthermore, the asymptotic

1 Some care has to be taken in the comparison of the zero B�C limit: this limit of the bilayer system yields D dipoles with twice the mass
of that of the single layer system. In the dipole limit, the ground state total energy depends on B and E as FHG4B�I�J	K�EML�J	K . This means that
the ratio of the bilayer energy to the single layer energy is proportional to NOL�J	K .
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configuration for � � . shows a tendency towards close packed (hard sphere like) hexagonal configurations, cf.
inset a) of Fig.2. These asymptotic configurations are the same as in a single layer containing � dipoles (see
Sec. 3), and may ( � � = A ) or may not coincide ( � � = . ) with the configuration of an � -particle Coulomb
system.

While the two asymptotic configurations are fixed

Fig. 2 Energy difference between the two lowest energy con-
figurations for � ����& e-h pairs. At small and large

�
, the

ground state is given by the configuration (3,9), whereas at in-
termediate

�
the configuration (4,8) is energetically more advan-

tageous. Also shown (insets) are the ground state configurations
at a) d=0.12, b) d=0.65, c) d=1.50.

by the respective single-layer Coulomb and dipole
ground states, the configurations at intermediate �
are a peculiar property of the two-layer system, cf.
the case of � � = A , Fig. 2. Here, the configu-
ration

� < D�6 � arises from a competition of in-layer
and inter-layer correlations and shows the strongest
deviations from the hexagonal two-dimensional
ground state: the two layers behave like a piece of
a 3D system with a mixture of 4-fold and 5-fold co-
ordination, see inset b) of Fig. 2. Similar behavior
is observed also for other particle numbers which
possess two energetically close shell configurations
[12]. The critical data of the transitions are summa-
rized in the table. We mention that in all cases we
observed a continuous change of the ground state
energy with � , but jumps of � � � � � resembling first-
order structural transitions.

Ground state of mesoscopic quantum clusters. Now the question arises if these ground states and structural
transitions are a property of the classical limit. To answer this question, we considered mesoscopic quantum
e-h-clusters.

Then the ground state Hamiltonian (1) contains
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Fig. 3 Ground state configuration of the quantum e-h cluster
with � �-� � for 4 different layer separations. The horizon-
tal line indicates the critical distance for the structural transition
�'&��	)�� � ����+ ��� .

in addition the quantum kinetic energy term:� ����
�� � � � ��
�� E�� 1�� A ��� 6
8
� �	� 1

8
, which leads

to quantum fluctuations and finite spatial exten-
sion of the electron (hole) wave functions. This
gives rise to a nonzero overlap of individual elec-
trons (holes) in each layer which, in principle,
might affect the ground state configurations. To
investigate this question, we performed path inte-
gral Monte Carlo simulations, for details see [1].
Our first preliminary results are shown in Fig. 3
for � � = . . We observe the same configurations
at large and small � as in the classical case, and
also a transition

� A D�6 � � �98 D : � around ��� 0 (in
this figure, the vertical axis is scaled with ?�

�0 �(0�� ). The precise value for ����� depends on the
density and will be given in Ref. [12].

N � ��� shell configuration change E
10 1.012

� A D76 � � �'8 D�: � 3.9167
12 0.953

�'8 D7= � � � < D�6 � 4.3463
0.325

� < D76 � � �'8 D7= � 2.1293

Table 1 Critical distances
�����

where the structural transitions occur and total energy at the transition point. The arrows
indicate the configuration change when

�
is reduced to

�����
.
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3 Comparison to single a layer with varying interaction potential

As we have seen above, in the two limiting cases of large and small � , the bilayer system behaves like a single
layer with Coulomb or dipole repulsion, respectively. It is, therefore, interesting to ask if the same behavior
would occur in a single layer in which the interaction law is changed accordingly. A similar analysis has been
performed for dusty plasmas where the interaction potential is a Debye/Yukawa potential [9, 11]. By changing the
screening length, this system also becomes dipole or Coulomb like, respectively. Here we study a different type
of interaction – a power law, = � ?�� , – and analyze the ground state as function of the exponent. This, naturally,
includes the Coulomb and dipole cases, � � = and � � 8

, respectively but also other exponents which occur
in other systems, including colloidal plasmas or selforganized atom layers on surfaces ( � � A ) or quadrupoles
( � � �

), for details, see [12]. We, therefore, will extend the analysis to both small and large � . Then, the
dimensionless ground state Hamiltonian is � � � 6

8:9<; ? � �8@; 
 � 6
8 ? 1 .

In Fig. 4 we present the energy difference of the

Fig. 4 Energy difference between the two lowest states for
� � � � and � � ��& electrons in a single layer as a function of
the interaction exponent. Insets show the ground state configu-
rations for � � � � and �4� ��+ ��� (a), �4� ��+ � (b), � � ��+ � (c)
and �5� �(+ � (d).

lowest configurations for the same two particle num-
bers as in Figs. 1 and 2 above. In the two cases,
the same trend is found: the curves start, at small
� , at zero energy difference, favoring the configu-
ration with fewer particles on the inner shell due to
the dominance of the repulsive correlation energy
(as in the Coulomb case, � � = ). In the limit of
large � where the interaction is becoming weak and
extremely short range, the confinement energy dom-
inates the symmetry, favoring a close-packed hexag-
onal lattice. Thus the ground state is again the con-
figuration with fewer particles in the central region
and a parallel alignment of layers, see inset d) of
Fig. 4. Comparing this picture with Fig. 1, we see
that in the two-layer case of � � = . , the dipole in-
teraction is slightly too long-range to reestablish the
close-packed configuration

� A D76 � (the critical expo-
nent is �	�

8 L < ).
Let us now consider the range of intermediate � . When � is increased beyond 1, the relative stability of

the configuration with more particles on the inner shell increases, due to a weakening of the contribution of
the correlation energy to the total energy, relative to the confinement energy, as discussed above. Whereas for� � = . a transition to the shell configuration

�98 D : � is observed, for � � = A , the energy difference does
not change sign. Interestingly, for � � = . , as a precursor of the transition a symmetry change of the

� A D�6 �
configuration is observed for � � . L = < , cf. insets a) and b) in Fig. 4. (Similar symmetry changes occur for other
particle numbers, e.g. in the metastable state

� < D�6 � for ��� = A ).
Comparing these results to the bilayer case we conclude that the configurations in the Coulomb and dipole

cases are the same. Different ground state configurations are, however, observed in the range of intermediate� and � , respectively. For example, for � � = A , the single layer system does not show a structural transition
in contrast to the bilayer system, cf. Figs. 2 and 4. This indicates that the interaction in the bilayer system at
intermediate � is qualitatively different as a result of strong interlayer correlations.

In summary, we analyzed the ground state configurations of classical mesoscopic symmetric electron hole
bilayer crystals and presented data for the structural transitions. Quantum Monte Carlo simulations confirmed
the same qualitative behavior in quantum e-h bilayers.
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