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Charge Correlations in a Harmonic Trap
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A system of N classical Coulomb charges trapped in a harmonic potential displayssstueliure and orien-
tational ordering. The local density profile is well understood from thesimulation, and experiment. Here,
pair correlations are considered for this highly inhomogeneous systelboth the fluid and ordered states. In
the former, it is noted that there is a close relationship to pair correlations imniform OCP. For the ordered
state, it is shown that the disordered “tiling” is closely related to the groune $taomson sites for a single
sphere.
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1 Introduction

Harmonically trapped Coulomb charges form a shell strgcinitheir local density profile at sufficiently strong
coupling. An ordering of the particles within the shells vicat still stronger coupling. This behavior is now
well understood at strong coupling from both experiment sintulation [1-6] and from theory (shell models)
[6-8]. Recently, Monte Carlo simulation and density fuontl theory have been applied across the entire fluid
phase [9, 10]. The theoretical approaches make clear tleatéssrole of pair correlations in the formation of
shells. Somewhat surprisingly, it was found that good Stalicture could be obtained using the pair correlations
for a uniform one component plasma (OCP) as an approximatidhe true correlations of the highly non-
uniform trap. The objective here is to report some initialds¢s of pair correlations among charges in a trap
under conditions of strong shell structure in both the fluid ardered states. The primary observations are:

The distribution of pairs in the trap in their fluid state isllwepresented by that for the three dimensional
OCP for particle numbeN = 50, even at strong coupling where shell structure is prominent

Angular correlations for particles within a given shell iretfluid phase are similar to those obtained from
the uniform three dimensional OCP if the pair distance ofl#itier is reinterpreted as the chord length for
two points in the shell.

Angular correlations for charges confined to a single spimetiee fluid phase are almost identical to those
for the two dimensional OCP with the pair distance integuleds the chord length.

Angular correlations in the ordered phase can be repreaségtthe solutions to the Thomson problem [11]
broadened by thermal disorder.

2 Pair correlations - fluid phase

Consider a one component system of Coulomb charg€ke two cases of interest here are a system of charges in
a harmonic trap, and the same system of charges in a unifautratizing background (OCP). Only equilibrium
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Fig. 1: Density profile forN° = 100 charges in trap showing shell structuié £ 50) (a). Comparison of
distribution of pairs for patrticles in trap with that for piates in bulk OCP " = 50) (b).

correlations are considered so the statistical propeatiesletermined from the potential energies
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Heren = N/V, where the volume is taken to be spherical with radius

Usually, the OCP is considered in the thermodynamic lifit ¥ — oo,n = N/V =constant) where it is
spatially uniform. This will be referred to as the bulk OCRwtever, the charges in the trap and those of the OCP
constitute the same system for fini¥e[12], which is shown by performing the integrals in (2) togiv
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ThusUpcp is equivalent tdJ/r, up to a constant which does not contribute to the equilibransemble. Both
systems are self-bound at a maximum radiys(when R > Ry). Force equilibrium on a particle for the trap
mw? Ry = ¢ N/R2 and similarly for the OCR7¢*nRy/3 = ¢> N/R? determineR,. Thus for the samé&V in
the trap and OCP, their volume and average density are the. damarticulamocp = nr = 3mw?/47q? and
R§ = ¢>N/mw?. This also impliesv? = 3w?, wherew? = 4mnocpq®/m defines the plasma frequency. In this
context, the bulk OCP corresponds to a harmonic trap withiteffilling, and the shell structure for particles in
atrap can be understood as finite volume effects for the OdPtdrminology here will be OCP for finit¥ and
bulk OCP for the thermodynamic limit. Simulations usingipdic boundary conditions describe the bulk OCP.

In reference [9] a theory for the density profile in the tragwaveloped in terms of the pair correlations within
the trap. For practical purposes it was found that the cpamrding bulk OCP pair correlations could be used,
giving an accurate approximation for the shell structut@sTs illustrated in Fig. 1a foNV = 100, and coupling
strengthl’ = Bq2/rq = 50 (wherer, is the mean distance for a pair defined4ynr3 /3 = 1 andn = N/V is
the density). Results from the adjusted hypernetted cih&ory (AHNC) and Monte Carlo are given, showing
their good agreement. In spite of the above equivalenceeo@P and trap for finitéV, it is surprising that
the correlations for the uniform bulk OCP could be the samthase for the trap with strong shell structure.
Nevertheless, this is the case as shown in Fig. 1b. The agreasquite reasonable f&¥ = 50 and improves
with increasingV. This plot gives the distribution of pairs within the traprfin Monte Carlo simulation, without
reference to where the center of mass of the pair is locathds T is not the pair correlation function defined
relative to the center of the trap, which would indeed reflsapatial inhomogeneity. In Fig. 1b the contributions
to a givenr come from all pairs at that distance anywhere within the.tfidpe bulk three dimensional OCP pair
correlation function is determined from molecular dynasrsgnulation.
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Fig. 2: Angular correlations for particles in the outer sleeimpared to those for a 3d bulk OCR (= 44,
I' = 100) (a). Pair correlation function for particles confined to a $éngphere = 50) compared to that for a
2d bulk OCP with distance interpreted as arc lendith=(126) (b).

This agreement is possible because the property beinglagduwepends only on the relative separation of
pairs, a translationally invariant property. The trap Hémnian can be expressed in terms of its center of mass and
relative coordinates by a canonical transformation. Feragyes of properties depending only on pair separation
the center of mass coordinate can be integrated out leaviramslationally invariant potential. For sufficiently
large N (e.g.,N = 50) most pairs are away from the trap surface and the pair loligion behaves like that for
the bulk OCP. A detailed demonstration of this will be givésearhere.

3 Angular correlations - fluid phase

Next consider the particles within a chosen shell, definethbydomain between the minima on either side of a
peak in the radial density profile (see Fig. 1a). An initiattjgde is chosen and the number of particles at an angle
0 relative to the first is calculated. In the fluid phase themdiational symmetry about the line from the origin
to the first particle, so only one angle is required for thiseation function. In practice the results obtained by
Monte Carlo simulation are an average over the radial asmiflthe shell for both members of a pair.

Fig. 2a shows the angular correlation function from molacdlynamics simulation oV = 44, " = 100, for
which there are two shells with and 36 particles. The correlation function is for the larger owkell. Also
shown are two results from the same molecular dynamics aiioual of the three dimensional OCP at the same
value ofT", but with two interpretations for the pair separation. I @ase, the usual Euclidean distance between
particles is chosen, i.e. the chord length. In the second tias argument of the bulk OCP pair correlation
function is interpreted as the larger arc length. The figli@vs a definite improvement in relative agreement
with the trap correlations in the second case. Absoluteesgeat is not expected since the trap data is averaged
over the annulus whereas the OCP data is calculated forspairihe maximum of the outer shell only. In this
context the location of the peaks is the relevant test folitgtize comparison.

The complication of a finite shell width can be mitigated bgramasing the coupling constatlit leading to
a sharpening of the shells into smaller annulae. This igdichsince ordering within the shells occurs at some
maximum value ofl” for the fluid state. The correlations are then very differgete below) and not related
to those of the bulk OCP. To explore the interesting relatigm of Fig. 2a under more controlled conditions,
consider the idealized case of charges confined to a singkrispl shell of zero width. The correlations are
now constrained to a two dimensional surface and the apipteptomparison is with correlations in the two
dimensional OCP. This is demonstrated in Fig. 2b where tlgailan correlations for particles constrained to
the sphere af' = 126 are compared to those for the two dimensional (Coulomb piai@®CP pair correlation
functionwith the distance reinterpreted as the arc lengithe remarkable agreement suggests a mathematical
relationship between the two quite different systems. Whyukhthe two systems find agreement when their
geometry (metric) is adjusted? This will be discussed disze:
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4 Angular correlations - ordered phase

At sufficiently largeI” rotational symmetry is broken and the particles within eslohll become ordered. The
ground state configuration f@r — oo is well studied by simulation and theory. In particular, alshmodel using
the correlation energy for the Thomson sites (minimum eneanfiguration for charges on a sphere) gives an
excellent description of the trap ground state energy [8fatt, the ground state positions for a given shell from
quenched molecular simulation are very close to the Thoms#es on a sphere of the same size and particle
number. Due to the spherical geometry, the ordering is ptlae in general and depends on the particle number.
It is tempting to consider the Thomson sites as the analofadumdamental lattice for these spherical crystals.
To test this picture the angular correlations for partidiesne shell of a trap with those for the corresponding
Thomson sites are compared. At finitethe Thomson site charges have kinetic energy and are egjtegsby

(0% 2
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£(8) =/ %e ,

wheref, are the Thomson sites ands a function ofl". Configuration data for the Thomson sites can be found
at [13]. Fig. 3 shows this comparison for a trap with particles 82 in the outer shell) ai* = 2000. The
corresponding Thomson correlations are showmfer 0.3. The very good agreement provides initial support
for this picture of Thomson sites as a fundamental sphetiatiice”. A detailed test requires further analysis
to study how structure appearslass increased, other values of for which very different order occurs, and a
comparison with configurations for nearby metastable stathis will be reported elsewhere.
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