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Charge Correlations in a Harmonic Trap
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A system ofN classical Coulomb charges trapped in a harmonic potential displays shellstructure and orien-
tational ordering. The local density profile is well understood from theory, simulation, and experiment. Here,
pair correlations are considered for this highly inhomogeneous system for both the fluid and ordered states. In
the former, it is noted that there is a close relationship to pair correlations in the uniform OCP. For the ordered
state, it is shown that the disordered “tiling” is closely related to the ground state Thomson sites for a single
sphere.
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1 Introduction

Harmonically trapped Coulomb charges form a shell structure in their local density profile at sufficiently strong
coupling. An ordering of the particles within the shells occurs at still stronger coupling. This behavior is now
well understood at strong coupling from both experiment andsimulation [1–6] and from theory (shell models)
[6–8]. Recently, Monte Carlo simulation and density functional theory have been applied across the entire fluid
phase [9, 10]. The theoretical approaches make clear the essential role of pair correlations in the formation of
shells. Somewhat surprisingly, it was found that good shellstructure could be obtained using the pair correlations
for a uniform one component plasma (OCP) as an approximationto the true correlations of the highly non-
uniform trap. The objective here is to report some initial studies of pair correlations among charges in a trap
under conditions of strong shell structure in both the fluid and ordered states. The primary observations are:

• The distribution of pairs in the trap in their fluid state is well represented by that for the three dimensional
OCP for particle numberN & 50, even at strong coupling where shell structure is prominent.

• Angular correlations for particles within a given shell in the fluid phase are similar to those obtained from
the uniform three dimensional OCP if the pair distance of thelatter is reinterpreted as the chord length for
two points in the shell.

• Angular correlations for charges confined to a single spherein the fluid phase are almost identical to those
for the two dimensional OCP with the pair distance interpreted as the chord length.

• Angular correlations in the ordered phase can be represented by the solutions to the Thomson problem [11]
broadened by thermal disorder.

2 Pair correlations - fluid phase

Consider a one component system of Coulomb chargesq. The two cases of interest here are a system of charges in
a harmonic trap, and the same system of charges in a uniform neutralizing background (OCP). Only equilibrium
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Fig. 1: Density profile forN = 100 charges in trap showing shell structure (Γ = 50) (a). Comparison of
distribution of pairs for particles in trap with that for particles in bulk OCP (Γ = 50) (b).

correlations are considered so the statistical propertiesare determined from the potential energies
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Heren = N/V , where the volume is taken to be spherical with radiusR.
Usually, the OCP is considered in the thermodynamic limit (N,V → ∞, n = N/V =constant) where it is

spatially uniform. This will be referred to as the bulk OCP. However, the charges in the trap and those of the OCP
constitute the same system for finiteN [12], which is shown by performing the integrals in (2) to give
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ThusUOCP is equivalent toUT , up to a constant which does not contribute to the equilibrium ensemble. Both
systems are self-bound at a maximum radiusR0 (whenR > R0). Force equilibrium on a particle for the trap
mω2R0 = q2N/R2

0 and similarly for the OCP4πq2nR0/3 = q2N/R2
0 determineR0. Thus for the sameN in

the trap and OCP, their volume and average density are the same. In particularnOCP = nT = 3mω2/4πq2 and
R3

0 = q2N/mω2. This also impliesω2
p = 3ω2, whereω2

p = 4πnOCP q
2/m defines the plasma frequency. In this

context, the bulk OCP corresponds to a harmonic trap with infinite filling, and the shell structure for particles in
a trap can be understood as finite volume effects for the OCP. The terminology here will be OCP for finiteN and
bulk OCP for the thermodynamic limit. Simulations using periodic boundary conditions describe the bulk OCP.

In reference [9] a theory for the density profile in the trap was developed in terms of the pair correlations within
the trap. For practical purposes it was found that the corresponding bulk OCP pair correlations could be used,
giving an accurate approximation for the shell structure. This is illustrated in Fig. 1a forN = 100, and coupling
strengthΓ ≡ βq2/r0 = 50 (wherer0 is the mean distance for a pair defined by4πnr30/3 = 1 andn = N/V is
the density). Results from the adjusted hypernetted chain theory (AHNC) and Monte Carlo are given, showing
their good agreement. In spite of the above equivalence of the OCP and trap for finiteN , it is surprising that
the correlations for the uniform bulk OCP could be the same asthose for the trap with strong shell structure.
Nevertheless, this is the case as shown in Fig. 1b. The agreement is quite reasonable forN = 50 and improves
with increasingN . This plot gives the distribution of pairs within the trap from Monte Carlo simulation, without
reference to where the center of mass of the pair is located. Thus it is not the pair correlation function defined
relative to the center of the trap, which would indeed reflectits spatial inhomogeneity. In Fig. 1b the contributions
to a givenr come from all pairs at that distance anywhere within the trap. The bulk three dimensional OCP pair
correlation function is determined from molecular dynamics simulation.
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Fig. 2: Angular correlations for particles in the outer shell compared to those for a 3d bulk OCP (N = 44,
Γ = 100) (a). Pair correlation function for particles confined to a single sphere (N = 50) compared to that for a
2d bulk OCP with distance interpreted as arc length (Γ = 126) (b).

This agreement is possible because the property being calculated depends only on the relative separation of
pairs, a translationally invariant property. The trap Hamiltonian can be expressed in terms of its center of mass and
relative coordinates by a canonical transformation. For averages of properties depending only on pair separation
the center of mass coordinate can be integrated out leaving atranslationally invariant potential. For sufficiently
largeN (e.g.,N = 50) most pairs are away from the trap surface and the pair distribution behaves like that for
the bulk OCP. A detailed demonstration of this will be given elsewhere.

3 Angular correlations - fluid phase

Next consider the particles within a chosen shell, defined bythe domain between the minima on either side of a
peak in the radial density profile (see Fig. 1a). An initial particle is chosen and the number of particles at an angle
θ relative to the first is calculated. In the fluid phase there isrotational symmetry about the line from the origin
to the first particle, so only one angle is required for this correlation function. In practice the results obtained by
Monte Carlo simulation are an average over the radial annulus of the shell for both members of a pair.

Fig. 2a shows the angular correlation function from molecular dynamics simulation ofN = 44,Γ = 100, for
which there are two shells with8 and36 particles. The correlation function is for the larger outershell. Also
shown are two results from the same molecular dynamics simulation of the three dimensional OCP at the same
value ofΓ, but with two interpretations for the pair separation. In one case, the usual Euclidean distance between
particles is chosen, i.e. the chord length. In the second case the argument of the bulk OCP pair correlation
function is interpreted as the larger arc length. The figure shows a definite improvement in relative agreement
with the trap correlations in the second case. Absolute agreement is not expected since the trap data is averaged
over the annulus whereas the OCP data is calculated for points at the maximum of the outer shell only. In this
context the location of the peaks is the relevant test for qualitative comparison.

The complication of a finite shell width can be mitigated by increasing the coupling constantΓ, leading to
a sharpening of the shells into smaller annulae. This is limited since ordering within the shells occurs at some
maximum value ofΓ for the fluid state. The correlations are then very different(see below) and not related
to those of the bulk OCP. To explore the interesting relationship of Fig. 2a under more controlled conditions,
consider the idealized case of charges confined to a single spherical shell of zero width. The correlations are
now constrained to a two dimensional surface and the appropriate comparison is with correlations in the two
dimensional OCP. This is demonstrated in Fig. 2b where the angular correlations for particles constrained to
the sphere atΓ = 126 are compared to those for the two dimensional (Coulomb potential) OCP pair correlation
function with the distance reinterpreted as the arc length. The remarkable agreement suggests a mathematical
relationship between the two quite different systems. Why should the two systems find agreement when their
geometry (metric) is adjusted? This will be discussed elsewhere.
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Fig. 3 Comparison of the angular correlations among particles in
the outer shell with those for the thermally broadened Thomson sites
(N = 38).

4 Angular correlations - ordered phase

At sufficiently largeΓ rotational symmetry is broken and the particles within eachshell become ordered. The
ground state configuration forΓ → ∞ is well studied by simulation and theory. In particular, a shell model using
the correlation energy for the Thomson sites (minimum energy configuration for charges on a sphere) gives an
excellent description of the trap ground state energy [8]. In fact, the ground state positions for a given shell from
quenched molecular simulation are very close to the Thomsonsites on a sphere of the same size and particle
number. Due to the spherical geometry, the ordering is not regular in general and depends on the particle number.
It is tempting to consider the Thomson sites as the analogue of a fundamental lattice for these spherical crystals.

To test this picture the angular correlations for particlesof one shell of a trap with those for the corresponding
Thomson sites are compared. At finiteΓ, the Thomson site charges have kinetic energy and are represented by

f(θ) =

√

α

π
e−α(θ−θ0)

2

,

whereθ0 are the Thomson sites andα is a function ofΓ. Configuration data for the Thomson sites can be found
at [13]. Fig. 3 shows this comparison for a trap with38 particles (32 in the outer shell) atΓ = 2000. The
corresponding Thomson correlations are shown forα = 0.3. The very good agreement provides initial support
for this picture of Thomson sites as a fundamental spherical“lattice”. A detailed test requires further analysis
to study how structure appears asΓ is increased, other values ofN for which very different order occurs, and a
comparison with configurations for nearby metastable states. This will be reported elsewhere.
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