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Abstract.
We study the Stark effect on excitonic complexes confined in a GaAs-based single quantum

well. We approach this problem using Path Integral Monte Carlo methods to compute the
many-body density matrix. The developed method is applied for investigation of the electric
field-dependence of energies, particle distribution and effective exciton dipole moment.

Using these results as an input we apply thermodynamical Monte Carlo methods to
investigate systems of several tens to thousands indirect excitons in a 2D quantum well with
a lateral confinement arising from the quantum confined Stark effect. Depending on the field
strength, exciton density and temperature different phases (gas, liquid and solid) of indirect
excitons are predicted.

1. Introduction
In the present work we aim to study equilibrium properties of excitons, charged excitons (trions)
and biexcitons under the influence of a quantum well confinement and an external electric field
produced by electrostatic contacts.

The field applied along the growth direction separates electrons and holes at different sides of
the quantum well (QW) and leads to formation of spatially indirect excitons. This system can
be a promising candidate for the observation of Bose condensation [1, 2, 3, 4] or crystallization of
excitons in heterostructures. While in many experimental realizations a system of two coupled
QWs is considered, here we show that a single QW can also be suitable for this purpose. At
high electric fields excitons can be considered as dipoles oriented perpendicular to the QW plane
with a repulsive, dipole-dipole like, interaction preventing formation of other bound states, such
as biexcitons. If the temperature is low enough the excitons can create bound states with
the excess carriers (free electrons or holes) and form positively or negatively charged excitonic
complex, i.e. trions, with a binding energy ranging from 2K to 11K (in GaAs-based QWs)
depending on the strength of the applied electric field. Hence, the question about the ground
state of indirect excitons and dissociation of trions and biexcitons in high electric fields has

1 Based on a talk and a poster presented at the conference “Progress in Nonequilibrium Green’s Functions III,
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an important implication for possibility to have favorable conditions for Bose condensation or
crystallization.

In section II we shortly discuss the basic ideas of our first principle Path integral Monte Carlo
(PIMC) technique. In section III we look in detail at the Stark effect and the dependence of
the exciton energy on the electric field. Further in Section IV, the obtained results (e.g. the
Stark shift and the effective dipole moment of indirect excitons) will be used as an input for
thermodynamical Monte Carlo simulations of several thousands of trapped excitons.

2. Path Integral Monte Carlo
The results presented in the next section have been obtained with the Path Integral Monte Carlo
technique based on presentation of the many-body density matrix in the terms of Feynman
trajectories [5]. The details on theoretical aspects and the practical implementation can be
found in the review [6] and Refs. [7, 8]. Below we give a brief overview of the applied technique.

In PIMC calculations we start from the following representation of the N-particle non-diagonal
thermal density matrix

ρ(R,R′; β) =
∫

V
dR1 . . .

∫
V

dRn−1ρ(R,R1; δβ)ρ(R1,R2; δβ) . . . ρ(Rn−1,R′; δβ), (1)

where R = (r1, r2, . . . , rN ) are the particle coordinates, and the integrations are performed in
the whole coordinate space over additional intermediate varibles on the n− 1 “imaginary time”
slices of a path, which starts at R(0) = R and ends at R(β) = R′. Here, the parameter
β = 1/kBT denotes the inverse temperature. The main advantage of this representation, as
was first recognozed by Feynman, is the fact that a low-temperature density matrix can be
expressed through high-temperature density matrices at an n-times higher temperature, i.e.
δβ = β/n = 1/nkBT . This expression is very useful for practical calculations if we write down
the high temperature approximation for each of the non-diagonal N -particle density matrices
ρk = ρ(Rk,Rk+1; δβ). Hence, the two main problems treated in PIMC calculations are, first, the
construction of the best approximation for ρk and, second, development of an efficient Metropolis
Monte Carlo integration procedure to sample the density matrix directly from Eq. (1).

For the simulations of particles with Fermi or Bose statistics we should place additional
symmetry restrictions on the density matrix in Eq. (1). One of the simple and widely used high-
temperature approximations to take into account the antisymmetry property of the fermion
density matrix is to express it through the Slater determinants of free-particle propagators for
each species of particles with the same spin projection

ρ(Rk,Rk+1; δβ) =
(

1
N↑!

)
detA(k, k + 1)↑↑ ·

(
1

N↓!

)
detA(k, k + 1)↓↓ × (2)

exp

⎛
⎝−δβ

⎡
⎣ N∑

i=1

V ext(rk
i ) +

N∑
i≤j

Vij(rk
ij)

⎤
⎦

⎞
⎠ ,

where V ext is the external potential, and Vij is the pair potential for particles i and j. The
(l, m) element of the N↑(↓) × N↑(↓) matrix A(k, k + 1) is defined as

a(k)l,m = exp
(
− m

2h̄2δβ
(rk

l − rk+1
m )2

)
. (3)

To sample the density matrix from Eq. (1) we use in the Metropolis algorithm the modulus
of the short-time propagators

∣∣ρ(Rk,Rk+1; δβ)
∣∣ as probability density. For fermions, the non-

diagonal short-time density matrix is not positive defined, and hence its sign should be taken
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into account by an additional weight function with the values, W (k, k + 1) = ±1, depending
on the parity of a permutation. Then the total sign coming from all “imaginary time” slices is

defined as W =
n−1∏
k=0

W (k, k + 1). For low temperatures and large systems the sign of each term

in the product changes independently, and as a result the total sign strongly oscillates which
leads to the so called “fermion sign problem”. In the present PIMC calculations, where the
maximum number of exchanged particles was two, e.g. in the biexciton - two electrons and two
holes, Eq. (3), can be used without modifications. The results presented below are for the singlet
state of two electrons or two holes. For zero magnetic field this corresponds to the ground state
of the system [9, 10].

For excitonic complexes in the QW in the presence of a homogenous electric field applied
normal to the QW plane we consider the hamiltonian of N = Ne + Nh particles

Ĥ = Ĥe + Ĥh +
N∑

i=1

N∑
j=i+1

eiej

ε|ri − rj | (4)

Ĥe(h) =
Ne(h)∑
i=1

(
− h̄2

2me(h)
∇2

ri
+ V ext

e(h)(zi)
)

(5)

where V ext(z) is the external potential which combines the effect of the QW confinement
(presented as a square well) and the applied electric field

V ext
i (z) =

{
eiEz · z, |z| ≤ L/2
V 0

i + eiEz · z, |z| > L/2 .
(6)

Our simulations have shown that use of the classical square well potential (6) leads to a
discontinuity of the density distribution at the QW edges. This discontinuity comes from the
infinite first derivative of the classical potential and is very slowly converging with the number
of time slices n in Eq. (1). This problem, however, can be easily overcome by using an effective
temperature-dependent potential (see the detailed discussion in Ref. [11]). We have precomputed
for every QW width, L, strength of electric field, Ez, and several inverse temperatures δβ the 1D
density matrix of electrons and holes in the z-direction. The effective potential V eff

ij can be then
obtained from the following definition using the pair density matrix in relative coordinates [6, 12]

ρ(rij , r′ij ; δβ) =
μ

3/2
ij

(2πh̄δβ)3/2
exp

[
− μij

2h̄2δβ
(rij − r′ij)

2

]
exp[−δβV eff

ij (rij)], (7)

where i and j can be any pair of particles, or a particle and the quantum well potential
(represented as an effective particle with the infinite mass; in this case the reduced mass coincides
with the particle mass μij = mi).

In the calculations of excitonic states presented below the temperature was varied in the range
T = 1/400 . . . 1/80 Ha (for GaAs heterostructure with 1Ha = 2Ry ≈ 133 K this corresponds to
temperatures 0.33 . . . 1.66 K) depending on the binding energy, EB, of the excitonic complex.
Usually we choose T ≈ 1/10 EB and our calculations correspond practically to the ground
state. We discretize our density matrix in Eq. (1) into n = 120 . . . 1200 time slices, hence
we use the high-temperature density matrices at temperatures 1/δβ = 1.5Ha (199.5 K) or
3Ha (399 K) and for the QW we use the effective potentials V eff

e(h) for electrons and holes
respectively. All interparticle interactions and the external confinement have been treated in
the pair approximation [6] using the off-diagonal pair potentials. More details can be found in
Ref. [12].
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P

robability
density

ρ
of

free
particles

(electron
and

hole)
and

the
particles

in
the

bound
states

(exciton,positive
and

negative
exciton)

in
a

hom
ogeneous

electric
field

of
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strength
[0,

4,
and

20
kV

/cm
]
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the

grow
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direction
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a
Q

W
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L

=
30

nm
.
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F
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electrode
is
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therefore,
electrons

(holes)
are

shifted
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D
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to
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higher

m
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the
hole
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stronger

localized
than

the
electron
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3.
P
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C

resu
lts

for
ex
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com
p
lex
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in

a
h
om

ogen
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electric

fi
eld

A
s

discussed
the

electric
field

m
odifies

the
confinem

ent
potential

and
leads

to
a

separation
of

electrons
and

holes,w
hich

leads
at

suffi
ciently

low
tem

peratures
to

form
ation

ofspatially
indirect

excitons,positive/negative
trions

and
biexcitons.

C
onsequently

the
spontaneous

recom
bination

tim
e

of
the

excitonic
states

can
be
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from

tens
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picoseconds
to

the
100ns-order

and
allow

s
for

equilibration,
i.e.

at
suffi

cient
low

tem
peratures

relaxation
to

the
ground

state.
W

e
start

our
considerations

from
single

excitonic
states

in
G

aA
s/A

lG
aA

s
Q

W
s.

W
ith

the
increase

ofthe
hom

ogenous
electric

field
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perpendicular
to

the
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W
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probability

density
for

electrons
and

holes
becom

es
shifted

to
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edges
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the
30
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w

ide
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W
(see

F
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For
three

different
electric

field
strengths
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in

F
ig.1

w
e

calculate
the

probability
density

of
free

carriers
(an

electron
and

a
hole)

as
w

ell
as

the
electron

and
the

hole
probability

density
(P

D
)

inside
the

exciton
and

the
positive

and
negative

trions,
X

±
.

A
t

zero
and

w
eak

fields,
F
ig.

1
(a),(b),

the
probability

density
in

each
excitonic

state
depends

on
the

relative
strength

of
electron-electron

repulsion
and

electron-hole
attraction.

For
the

exciton
the

peaks
of

electron
and

hole
P

D
have

the
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allest
separation

reflecting
the

fact
that

the
exciton
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the

m
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strongly
bound
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plex.

H
ow

ever,ifw
e

now
m
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high
electric

fields
ofabout

20
kV

/cm
and

above,the
correlation

effects
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the
grow
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direction

ofthe
Q

W
practically

vanish.
N

ow
only

the
electric

field
plus

Q
W

confinem
ent
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a

dom
inant

role
and

determ
ines

the
profile

of
the

P
D

.
In

this
case,

as
show

s
F
ig.

1(c),
the

P
D

of
free

particles
coincides

w
ith

that
of

the
exciton

and
the

trions
in

the
sam

e
electric

field.
T

his
result

allow
s

us
to

conclude
that

in
the

Q
W

s
at

high
electric

fields
for

both
num

ericaland
analyticalconsiderations

the
usage

of
the

adiabatic
approxim

ation
in

z-direction
is

resonable
and

the
problem

can
be

effectively
reduced

to
a

2D
system

sim
ilar

to
the

approach
used

in
R

ef.[8].
T

he
validity

of
the

adiabatic
approxim

ation
can

be
also

independently
checked

by
com

paring
the

binding
energy

of
the

excitonic
com

plexes
vs

electric
field

for
the

effective
2D

and
3D

system
s

[11].
In

our
calculations

w
e

have
considered

three
G

aA
s/A

l0
.3 G

a
0
.7 A

s
Q

W
s

of
the

w
idths,

L
=

10,20
and

30
nm

,w
hich
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typicalfor

experim
entalsam

ples.
A

s
w

e
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see,from
F
ig.2(a),in
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narrow

10
nm

Q
W

,excitonic
states
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practically

not
influenced

by
the

field
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total

energy
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the

carriers
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becom

e
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least
for

fields
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20

kV
/cm

,
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to
the

dom
inant

effect
of

the
Q

W
confinem

ent,
therefore

E
>

0
in

F
ig.2(a).

In
contrast,for

the
w

ide
30

nm
Q

W
the

field
dependence

ofthe
totalenergy

is
strong
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Q
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w
hile
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.
H
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at
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both
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indirect
excitons
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(for
tem

peratures
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K
)

can
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In
com

parison,
the

biexciton
becom

es
ionized

into
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o
excitons

at
the

field
E

z ≈
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/cm

w
hen

the
induced

dipole
m
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ent

oftw
o

coupled
excitons

becom
es

suffi
ciently

large,and
the
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dipole-dipole

interaction
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form
ation

of
a

bound
state.

N
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w
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the

field
dependence

of
the

induced
dipole

m
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ent,
see

F
ig.

3.
T

he
dipole

m
om

ent
can

be
obtained

directly
from

the
electron

and
hole

density
distributions

calculated
for

different
field

strengths
as

show
n

in
F
ig.

1
(the

exciton
case).

T
o

get
the

dipole
m

om
ent,

μ
=

e·
d,

w
e

use
the

expression

d
=

〈z
e 〉−

〈z
h 〉

= ∫
z
e ρ

e (z
e )d

z
e − ∫

z
h ρ

h (z
h )d

z
h ,

(8)

w
hich

is
the

difference
betw

een
the

average
positions

of
the

electron
and

the
hole

inside
the

Q
W

,
see

F
ig.

3(right
panel).

T
he

separation
d

starts
from

zero
at

E
z

=
0

kV
/cm

w
hen

the
P

D
is

com
pletely

sym
m

etric,
and

increases
m

onotonically
to

the
value

d
=

15.78
nm

at
E

z
=

20
kV

/cm
.

A
t

w
eak

fields,
E

z ≤
10

kV
/cm

,
the

dependence
is

linear,
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to
saturate

at
E

z ≥
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kV
/cm

.
In

the
next

section
w

e
discuss

a
possible

realization
of

an
external
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confinem
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for

excitons
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Q

W
plane

and
show

how
the

above
results
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quantum

sim
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in
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field
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m

any-exciton
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s
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T
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allthree
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and
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density
becom
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a
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through

the
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field. 201
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o
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potential
for
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created

excitons
in

a
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Q
W

w
e

have
to

put
the

follow
ing

constraints
on

the
external

potential:

(i)
A

s
excitons

are
quasi

particles
w

ith
a

short
lifetim

e
w

e
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to
assure

that
they

can
therm

alize
to

a
quasi-equilibrium

.
B

y
spatialseparation

ofelectrons
and

holes
in

an
electric

field
perpendicular

to
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Q
W

plane
the

exciton
radiative

lifetim
e

can
be

extended
by

m
ore

than
three

orders
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m
agnitude.

(ii)
In

addition
to

the
spatial

separation
of

electron
and

holes,
a

lateral
confinem

ent
for

the
excitons

arises
from

the
quantum

-confined
Stark

effect,
w

hich
depends

only
on

the
z-

com
ponent

of
the

electric
field.

T
he

size
of

the
resulting

trap
is

of
the

order
of

several
m

icrom
eters.

A
sim

ilar
trap

size
has

been
recently

realized
by

applying
deform

ation
stress

on
the

Q
W

surface
[13].

(iii)
T

he
radialcom

ponent
ofthe

field
leads

to
destabilization

ofthe
excitons

due
to

the
opposite

direction
of

the
externalforces

acting
on

the
electrons

and
holes.

H
ence

the
radialfield

has
to

be
m

inim
ized

by
a

proper
choice

of
the

geom
etry

of
the

electrostatic
contacts.

(iv)
Further

the
applicable

field
strength

is
lim

ited
as

it
should

not
result

in
ionization

of
the

excitons
by

tunneling
of

particles
out

of
the

quantum
w

ell.

T
o

produce
a

suitable
(inhom

ogeneous)
electrostatic

field
E

z
in

the
quantum

w
ell

plane
satisfying

the
above

requirem
ents,w

e
consider

a
single

tip
electrode

placed
above

the
substrate.

T
hus

the
in-plane

exciton-exciton
coupling

strength
can

be
adjusted

independently
by

the
strength

of
the

external
confinem

ent,
as

w
ell

as
by

the
exciton-exciton

repulsion
strength.

W
hile

controlling
the

tip-substrate
distance

allow
s

to
specify

the
geom

etry
of

the
quantum

Stark
confinem

ent
and

w
ith

it
the

exciton
density,

changing
the

tip
voltage

gives
direct

access
to

E
z

and
the

corresponding
exciton

dipole
m

om
ent,

see
F
ig.

3
(right

panel).
In

the
follow

ing
w

e
consider

a
single

Q
W

of
the

w
idth

L
=

30
nm

w
hich

provides
a

suffi
cient

strong
Stark

shift
(see

section
III).T

he
distance

betw
een

electrode
and

sam
ple

is
50μ

m
and

the
(non-critical)

w
idth

ofthe
bufferlayer

is
300

nm
.

D
ue

to
the

sym
m

etry,the
radialfield

E
z

below
the

electrode
is

zero
and

increases
linearly

w
ith

the
distance

from
the

trap
center,see

F
ig.4(a).
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Figure 4. a) Radial, Er, and vertical, Ez, field component below the electrode. b) Exciton
energy as a function of the exciton in-plane position (quantum Stark confinement potential),
which can be approximated as parabolic in the central region of the trap. Right Figure is an
enlargement of the dottet region in part b).

This provides an effective “evaporative” cooling mechanism, because with increased distance
from the trap center ionization is enhanced and energetic free electrons and holes leave the trap.
In contrast, according to the large tip to sample distance, the radial field in the central region
of the trap is negligible.

To avoid formation of other bound states except excitons (biexcitons and trions) the applied
field should not be less than Ez = 20 kV/cm. On the other hand stronger fields introduce
high demands on the experimental realization and lead, as mentioned above, to ionization and
tunneling out of the QW. Hence we consider, in the following, an inhomogeneous field induced by
a tip electrode, which below the electrode in the QW plane equals 20 kV/cm and causes a Stark
shift of 20 meV, see Fig. 2(b). In the relevant central region of the QW, i.e. R < 15 μm, the
effective lateral confinement of the excitons, as derived in the next section, can be approximated
by a harmonic trap, Ex = 1

2mxω2
0R

2 (where mx = me + mh = 0.41m0 is the total exciton mass
in the GaAs QW) with the frequency ω0 = 3.8 GHz, see Fig 4(b).

By changing the field strength and geometry, the laser intensity (exciton number) and
temperature, the exciton-exciton correlations can be varied in broad ranges giving rise to gas-like,
liquid-like and solid-like behavior.

5. Model of indirect excitons in the trap
At temperatures much less than the exciton binding energy, i.e. T � EB(X) ≈ 133 K, and
moderate densities, scattering states, i.e. free (unbound) electrons and holes, can be neglected.
Further, the strong electric field prevents formation of biexcitons. Due to the strong electron-hole
binding indirect excitons are formed. Hence we will now transform the Hamiltonian, Eq. (4),
into a Hamiltonian of Nx bound electron hole pairs (Ne = Nh = Nx)

Ĥ = Ĥe + Ĥh +
Ne∑
i=1

Nh∑
j=1

Veh(rei, zei, rhj , zhj) +
∑

α=e,h

Nα∑
i=1

Nα∑
j=i+1

Vαα(rαi, zαi, rαj , zαj) (9)

where from now on vectors r denote 2d vectors in the QW plane. The Hamiltonian of non-
interacting electrons (holes) reads

Ĥe(h) =
Ne(h)∑
i=1

[
− h̄2

2me(h)
∇2

re(h)i
+ V QW

e(h) (zi) + V F
e(h){Ez(ri, zi)}

]
(10)

where V QW is the QW confinement and V F is the electrostatic potential due to the electric field.
Now we want to distinguish the interaction between the electron i and the hole j bound in the
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exciton, V i=j
eh , and the electron-hole interaction of the particles i, j from two different excitons,

V i�=j
eh . We call these two types of interactions intra- and inter-exciton electron-hole correlation

terms, respectively. The general expression for all types of interactions is given by

Vαβ(rαi, zαi, rβj , zβj) =
eiej

ε
√|rαi − rβj |2 + (zαi − zβj)2

(11)

where α = e, h and β = e, h.

5.1. Lateral confinement potential for excitons
Using the results obtained for the single exciton problem from PIMC simulations (Sec. III)
allows us to obtain the quantum Stark confinement in the limit d � r̄, where r̄ is the average
exciton-exciton separation., i.e. the exciton binding energy is much stronger than all other
Coulomb interaction terms. Then the Hamiltonian (9) can be written as

Ĥ =
Nx∑
i=1

Ĥ(i)
x +

Nx∑
i=1

Nx∑
j=i+1

Uxx , (12)

with the single exciton Hamiltonian given by

Ĥ(i)
x = − h̄2

2me
∇2

rei
− h̄2

2mh
∇2

rhi
+ V ext

e (rei , zei) + V ext
h (rhi , zhi) + Veh(rei, zei, rhi, zhi) , (13)

where

V ext
e(h)(re(h)i

, ze(h)i
) = V QW

e(h) (zi) + V F
e(h){Ez(ri, zi)} (14)

is the effective external potential due to the external field and the QW. Introducing relative and
center of mass coordinates of an electron hole pair

Ri = (merei + mhrhi)/mx, ri = rei − rhi , (15)
Zi = (mezei + mhzhi)/mx, zi = zei − zhi , (16)

mx = me + mh, m−1
r = m−1

e + m−1
h , (17)

the relative coordinates {ri, zi} describe the internal exciton structure (exciton wave function)
whereas the center of mass coordinates {Ri, Zi} describe the position of the exciton in the
external potential.

Using the adiabatic approximation discussed in Sec. III we can separate the z-direction and
average the 3D Hamiltonian over the QW thickness using the PD functions of the single electron
and hole for the corresponding electric field, see Fig. 1. This reduces the problem to an effective
2D-system of dipoles moving in the QW plane. For our calculations we assume that the field is
constant over the (narrow) QW width, i.e. Ez(ri, zi) = Ez(ri). Knowing the electron and hole
probability distributions ρe, ρh for a given external field, see Fig. 4(a), we compute the effective
electron-hole separation as a function of the exciton center of mass coordinate

d(Ri) = 〈zei − zhi〉ρe(rei ,zei ),ρh(rhi
,zhi

) , (18)

as well as the average intra exciton correlation

Ueh(Ri) = 〈Veh(rei, zei, rhi, zhi)〉ρe,ρh
+

〈
− h̄2

2mr
∇2

ri

〉
ρe,ρh

(19)
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plus the effective confinement potential

U ext
x (Ri) ≈ 〈V ext

e (rei , zei)〉ρe + 〈V ext
h (rhi , zhi)〉ρh

. (20)

The total energy of the exciton depending on its position in the trap, see Fig. 4(b), is obtained
using the results for Stark shift of the exciton energy (Fig. 2) taken for the z-components of
electric field produced by the electrode, see Fig. 4(a). After separation of the relative problem
which gives rise to a single exciton Coulomb energy contribution Ueh(Ri), the single exciton
Hamiltonian becomes

Ĥ(i)
x (Ri) = − h̄2

2mx
ΔRi + U ext

x (Ri) + Ueh(Ri) . (21)

Due to the quantum confined Stark effect, the exciton total energy has a minimum below the
electrode where the Ez-field is the strongest and produces an effective almost parabolic lateral
confinement acting in plane of the QW, see Fig. 4(b).

5.2. Effective exciton-exciton interaction
As mentioned above we consider low exciton densities, that means for the considered trap on
the micrometer scale the exciton-exciton distances exceed 10 aB (we use as length unit the
effective Bohr radius aB = h̄2ε/mee

2 = 9.98 nm), i.e. rs = r̄/aB ≥ 10. Furthermore, our PIMC
calculations of the effective exciton-exciton interaction Uxx(Ri,Rj) in the low density limit show
that for exciton-exciton distances larger than 3.5 aB the classical dipole interaction is a good
approximation [14]. This means that all pair interactions in the electron hole system (except
the electron-hole interaction inside each exciton, i.e. terms Veh with i = j) can be reduced to
dipole-dipole interactions between (center of masses of) excitons

Ne∑
i=1

Nh∑
j=1,j �=i

Veh +
Ne∑
i=1

Ne∑
j=i+1

Vee +
Nh∑
i=1

Ne∑
j=i+1

Vhh ≈
Nx∑
i=1

Nx∑
j=i+1

Uxx(Ri,Rj) (22)

where Uxx(Ri,Rj) = μ(Ri)μ(Rj)/(ε|Ri − Rj |3). The dipole moment depends on the position
of the exciton relative to the trap center μ(R) = e0 · d(R) = e0 · [15.78− 3.8 · 10−9R2] nm. Here
we have neglected all quantum properties of the center of mass motion and the spin statistics
of electrons and holes. This is well justified in the low-density regime where the overlap of two
electrons (holes) is negligible.

Finally, the problem reduces to a 2D-system of Nx = N/2 classical particles in an effective
external confinement interacting via dipole-dipole repulsion with the Nx-particle Hamiltonian

H =
Nx∑
i=1

H(i)
x (Ri) +

Nx∑
i=1

Nx∑
j=i+1

μ(Ri)μ(Rj)
ε|Ri − Rj |3 (23)

which can be efficiently used in classical thermodynamic Monte Carlo simulations discussed in
the next section, where we analyze spatial configuration of Nx excitons at different temperatures
and densities.

6. Simulation results
In our simulations the control parameters are the temperature kBT and number of particles, Nx.
How many excitons can be created in the trap depends on the laser intensity and recombination
rates.
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Figure 5. Typical snapshots of thermodynamic Monte Carlo simulations for various numbers
of excitons Nx and temperatures T .

Fig. 5 shows typical particle configurations observed in our simulations. First, we find that the
size of the exciton cloud and the exciton density in the trap center increase with the number of
excitons. Second, with decreasing temperature the cold excitons become localized. The typical
size of the exciton cloud, Rmax, strongly depends on temperature. For Nx = 3000 excitons,
Rmax ≈ 10μm for T = 4 K and Rmax ≈ 3μm for temperatures around 40 mK.

Fig. 6 shows that, for T = 4K, the excitons are in the gas phase. In the fluid state (at
T = 40 mK) the excitons are localized in the trap center with the diameter D ≈ 3 μm. At T =
0.4 mK the radial distribution clearly shows a shell structure. This behavior is validated by the
temperature dependence of the classical coupling parameter Γ = 〈Uxx〉/kBT = 〈e2d2/εR3

ij〉/kBT ,
see Fig. 7. When we observe formation of shells, the coupling parameter reaches values Γ ≥ 100.
This qualitatively agrees with the well known results for a pure classical 2D Coulomb systems,
where the formation of a Wigner lattice has been found for Γcr ≈ 137.

On the other hand, if we look at the density in the trap center (see inset of Fig. 6), it
increases strongly with the exciton number, and a more accurate discription is required. Typical
parameters characterizing the “quantum” system are the Brueckner parameter, rs = r̄/aB, and
the dipole parameter, γ = r̄/d, where r̄ is the nearest neighbor distance (first peak of the pair
correlation function). Performed estimations of these parameters in the trap center give us the
following values (depending on the exciton number Nx): i) for Nx = 2 we get rs = 35 and
γ = 23; ii) for Nx = 3000 we get rs = 11 and γ = 8. These estimates show that our classical
treatment of the center of mass motion of the excitons is justified. On the other hand, with
further increase of Nx, rs will approach unity, and a full quantum treatment will be necessary.
These calculations are under way [14].
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Figure 6. Radial density distribution of Nx = 30 excitons for three temperatures. Due to
the parabolic trap the highest exciton density is reached in the trap center. Inset: trap center
density as a function of exciton number.

Figure 7. Dipole coupling parameter Γ = 〈Uxx〉/kBT as a function of exciton number for
three different temperatures. Inset: Simulation snapshots of Nx = 100 excitons. Depending on
temperature excitons are in solid, liquid or gas phase.

7. Conclusions
We have considered optically excited indirect excitons in a single QW where the electrostatic
field of a tip electrode leads to spatial separation of electrons and holes. The harmonic lateral
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confinement of the indirect excitons in the QW plane is due to the quantum confined Stark
effect and creates an exciton trap of micrometer size which is much larger than the exciton Bohr
radius. In the considered low density regime a strong dipole-dipole repulsion allows for strong
localization of the exciton wave functions.

Using Path Integral Monte Carlo we computed the PD and the energy Stark shift for different
excitonic complexes influenced by the electric field. We obtained an effective exciton lateral
confinement and the dipole moment of indirect excitons depending on the strength of the electric
field. We discussed the influence of field strength, QW width, excitation intensity (directly
related to the exciton population of the trap) and temperature. Our theoretical results allowed
us to predict the parameter range where interesting many-particle states, including exciton
crystallization, are expected to exist. With these predictions experimental realization of these
effects should be possible.

[1] Lozovik Yu E, Yudson V I 1976 JETP Lett. 22 274; Lozovik Yu E and Berman O L 1997 JETP 84 1027
[2] Bayer M, Timofeev V B, Faller F, Gutbrod V, and Forchel A 1996 Phys. Rev. B 54 008799
[3] Negoita V, Snoke D W, Eberl K, 1999 Phys. Rev. B 60 2661
[4] Butov L V, Ivanov A L, Imamoglu A, Littlewood P B, et al 2001 Phys. Rev. Lett. 86 5608 and references

therein.
[5] Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Integrals McGraw Hill, New York
[6] Ceperley D M 1995 Rev. Mod. Phys. 65 279
[7] Filinov A V, and Bonitz M in 2006 Introduction to Computational Methods in Many Body Physics, Bonitz

M and Semkat D (eds.) Rinton Press, Princeton
[8] Filinov A V, Riva C, Peeters F M, Lozovik Yu E, and Bonitz M 2004 Phys. Rev. B 70 35323
[9] Riva C, Peeters F M, and Varga K 2001 Phys. Rev. B 64 235301

[10] Riva C, Peeters F M, and Varga K 2001 Phys. Rev. B 63 115302
[11] Filinov A V, Ludwig P, Bonitz M, Lozovik Yu E, and Stolz H in preparation
[12] Filinov A V, Golubnychiy V O, Bonitz M, Ebeling W, and Dufty J W 2004 Phys. Rev. E 70 046411
[13] Snoke D W, Liu Y, Voros Z, Pfeiffer L, West K 2004 arXiv: cond-mat/0410298
[14] An analysis of improved pair potentials, valid also for high densities, is in progress.
[15] Filinov A, Bonitz M and Lozovik Yu E 2001 Phys. Rev. Lett. 86 3851
[16] Filinov A, Bonitz M, and Lozovik Yu E 2003 J. Phys. A: Math. Gen. 36 5899
[17] Filinov A, Ludwig P, Golubnychyi V, Bonitz M and Lozovik Yu E 2003 Phys. Stat. Sol. (c) 0, No. 5, 1518
[18] Ludwig P, Filinov A, Bonitz M and Lozovik Yu E 2003 Contrib. Plasma Phys. 43 285

208


