
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

On the Coulomb–dipole transition in mesoscopic
classical and quantum electron–hole bilayers

P Ludwig1,2,3, K Balzer1, A Filinov1, H Stolz2 and M Bonitz1

1 Institut für Theoretische Physik und Astrophysik,
Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
2 Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
E-mail: ludwig@theo-physik.uni-kiel.de

New Journal of Physics 10 (2008) 083031 (24pp)
Received 14 April 2008
Published 20 August 2008
Online at http://www.njp.org/
doi:10.1088/1367-2630/10/8/083031

Abstract. We study the Coulomb-to-dipole transition which occurs when
the separation d of an electron–hole bilayer system is varied with respect to
the characteristic in-layer distances. An analysis of the classical ground state
configurations for harmonically confined clusters with N 6 30 electron–hole
pairs reveals that the energetically most favourable state can differ from that of
two-dimensional pure dipole or Coulomb systems. Performing a normal mode
analysis for the N = 19 cluster it is found that the lowest mode frequencies
exhibit drastic changes when d is varied. Furthermore, we present quantum-
mechanical ground states for N = 6, 10 and 12 spin-polarized electrons and
holes. We compute the single-particle energies and orbitals in self-consistent
Hartree–Fock approximation over a broad range of layer separations and
coupling strengths between the limits of the ideal Fermi gas and the Wigner
crystal.
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1. Introduction

Self-organized structure formation, in particular Coulomb crystallization [1], is among the
most exciting cooperative phenomena in the field of charged many-particle systems. In the
case of finite, parabolically confined systems, extensive experimental and theoretical work
on various types of two- and three-dimensional (2D and 3D) systems has revealed that
in the strong coupling limit charged particles can arrange themselves in a highly ordered
crystalline state with a nested shell structure. Examples are ions in Paul and Penning
traps [2, 3], dusty plasmas [4]–[11] and electrons in quantum dots and wells [12]–[18].
For these so-called ‘artificial atoms’, Mendeleev-type periodic tables were found including
characteristic occupation numbers, shell closures and unusually stable magic configurations.
For a recent overview see [1]. Recently, there has been growing interest in 2D dipolar
macroscopic systems [19]–[24] as well as finite size dipolar (quantum) clusters in small-scale
confinement potentials [25]–[32]. While in particular the ground state and dynamical properties
of 2D mesoscopic pure Coulomb and pure dipole interacting particle ensembles in parabolic
confinement potentials are well understood, the behaviour of real 3D electron–hole double layer
systems, where the dipole approximation is not valid, is still poorly investigated. This is despite
the fact that the additional degree of freedom, i.e. the layer separation d, is expected to allow
for a variety of interesting new effects which are due to the possibility of tuning the effective
in-layer interaction potential.

The results presented in this paper are applicable to semiconductor heterostructures and
coupled quantum dots as well as to molecular systems, where the dipole moment of the charge
carriers and thus the interaction strength is tunable, e.g. [32, 33]4. For a consistent formulation,

4 Another natural source of confinement arises in low-dimensional semiconductor structures from defects and
well width fluctuations. This leads to local potential minima for the charge carriers causing localization of free and
bound charges (excitons, biexcitons and trions), e.g. [34]–[36].
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we concentrate on the problem of two vertically coupled symmetric layers containing
parabolically confined, spin-polarized electrons and holes of identical particle number Ne =

Nh = N and effective masses m∗

e = m∗

h = m∗, respectively. The underlying Hamiltonian is

Ĥ = Ĥe + Ĥh − Ĥe−h, (1)

with the intra- and interlayer contributions

Ĥe(h) =

Ne(h)∑
i=1

−
h̄2

2 m∗

e(h)

∇
2
ri

+
m∗

e(h)

2
ω2

0r2
i +

Ne(h)∑
j=i+1

e2

4πε
√
(ri − r j)2

 , (2)

Ĥe−h =

Ne∑
i=1

Nh∑
j=1

e2

4πε
√
(ri − r j)2 + d2

, (3)

where the electrons (e) and holes (h) are confined to planes of zero thickness which are at a
distance d apart. The 2D vectors ri( j) are the in-plane projections of the particle coordinates,
e the elementary charge and ε the static permittivity. The strength of the confinement is
controllable by the trap frequency ω0.

The most fascinating property of this system is that the effective in-layer particle interaction
changes with the interlayer separation d: from Coulomb interaction at large d, where both layers
are decoupled, to dipole interaction at small d → 0, where the attractive interlayer interaction
leads at low temperature to vertical electron–hole coupling and formation of vertically aligned
dipoles—excitons. On the other hand, at intermediate values of d, when the repulsive intra-
and attractive interlayer interaction energies according to equations (2) and (3) are comparable,
the system shows a real 3D behaviour. In [28], it was reported that, as a consequence of the
Coulomb–dipole transition, the considered system can exhibit structural changes of its ground
state shell configuration when d is varied.

In section 2, we extend these results and present a systematic study of the classical ground
states, varying d for mesoscopic clusters with N 6 30 particles in each layer. Further, we extract
the fundamental dynamical features in the case of weak excitation by solving the dynamical
(Hessian) matrix for the ground state configurations found in section 2. Doing this, in section 3,
we discuss the d-dependence of the collective N -particle modes for the N = 19 cluster. Here, we
highlight the close relationship between structural and collective dynamical cluster properties
as rotation of shells and vortices. In section 4, we extend the analysis to fermionic e–h quantum
bilayers utilizing a self-consistent Hartree–Fock (SCHF) ansatz. In particular, Coulomb-to-
dipole transition-induced (critical) quantum phenomena are presented for the clusters with
N = 6, 10 and 12 electrons and holes. The results include the N -particle densities and the single-
particle spectrum and orbitals as functions of coupling strength λ and layer separation d .

2. Classical ground state transitions

The classical ground state corresponding to the equations (1)–(3) is described by the
Hamiltonian H = He + Hh − He–h without the kinetic energy, i.e.

He(h) =

N∑
i=1

r2
i +

N∑
i< j

1√
(ri − r j)2

, He−h =

Ne∑
i=1

Nh∑
j=1

1√
(ri − r j)2 + d2

. (4)
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This dimensionless form is obtained by applying the transformation rules {r → r/r0, E →

E/E0, d → d/r0} with the characteristic length r0 = (e2/2πεmω2
0)

1/3 and energy E0 =

(mω2
0e4/32π 2ε2)1/3. Note that model (4) contains no explicit dependence on the trap frequency

ω0. The considered classical model system in its ground state is completely defined by only two
parameters: the particle number N and the layer separation d, which also influences the in-layer
density.

At low temperatures, it is found that the electrons and holes arrange themselves pairwise
on nested concentric rings with characteristic occupation numbers (N1, N2, . . .), where Ni

denotes the number of electrons (holes) on the i th ring starting from the centre. The
ground state configuration is the energetically lowest of all possible stable states, whose
number rapidly increases with N , and all these have to be found and checked. This task is
complicated, since many of the different stable states are energetically close, requiring high-
accuracy computations. A systematic search for the global minimum-energy structure in the
4N -dimensional configuration space was performed by means of an optimized molecular
dynamics annealing technique utilizing an adaptive step size control [8, 28]. For each value
of N and d, the annealing process was repeated for a large (N - and d-dependent) number of
times. This slow (long) annealing process ensures that the lowest-energy state is found with high
probability. The critical points of structural transitions dcr were identified as crossing points of
the energies of the lowest-energy states as functions of layer separation d.

Extending the analysis of [28], we obtained a periodic table for the particle numbers
N 6 30 including all structural transitions occurring when d is changed, see table 1. In the
limits of pure dipole and Coulomb interaction our results are in full agreement with those
of [25] and [12, 16], respectively5. Analysing the clusters N 6 18, only transitions for N = 10
and 12 reported in [28] are found. Due to the much larger configurational space, and thus
accordingly higher number of low-energy metastable states, for the clusters N = 19, . . . , 30
in total 6 particle numbers reveal Coulomb–dipole transitions: N = 19, 21, 23, 26, 29 and 30.
In particular, two transition types are identified:

(A) While for the majority of the investigated clusters the ground state shell configuration of
the single layer Coulomb and dipole case are identical, for N = 10, 21, 23, 26 and 29
this is not the case. When changing from a long-range Coulomb to a short-range dipole
interaction a higher particle number on the inner shell becomes favourable. A similar trend
is also known from 2D [5, 6] and 3D [9, 10] Yukawa-clusters when the screening strength
is increased6.

(B) A second type of transition is found for N = 12, 19 and 30 that cannot be concluded from
different shell occupations in both limits of d: at large values of d again a transition
of type (A) takes place, which increases (decreases) the particle number on the inner
(outer) shell when d is reduced. But interestingly, at small values of d a second kind of
transition to a six-fold-coordinated, commensurate particle configuration is found allowing
for an energetically more favourable closed packing of the composite dipoles. Such
symmetry-induced re-entrant configuration changes are only observed in cases where
highly symmetric, ‘magic’ configurations with a bulk-like triangular structure are involved.

5 In [12], the ground state for N = 29 was erroneously given as (5, 10, 14). This was corrected in [16].
6 The effect is due to the radial balance of total internal F int and external Fext forces on each particle. In contrast
to Coulomb, short-range (dipole or Yukawa) forces do contribute to Fext which requires a higher density towards
the centre to stabilize the cluster matching F int

= Fext. For details see [10].
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Table 1. Ground state shell structures for 2D Coulomb, bilayer and dipole
clusters of N particles in a parabolic confinement. The arrows indicate the
direction of the ground state transition from large to small values of d . Magic
(commensurate) shell configurations are underlined. For N 6 5, only a single
shell is populated for all values of d. For all configurational transitions, the
critical layer separation dcr as well as the corresponding total energy per
composite dipole Ecr/N is given. Note that the binding energy 1/d which
ensures the exact vertical alignment of the electron–hole pairs is excluded from
the energy values as it is independent of the cluster configuration.

N Coulomb Bilayer dcr Ecr/N Dipole

5 5 No transition 5
6 (1,5) No transition (1,5)
7 (1,6) No transition (1,6)
8 (1,7) No transition (1,7)
9 (2,7) No transition (2,7)
10 (2,8) (2,8)→ (3,7) 1.0116 3.9167 (3,7)
11 (3,8) No transition (3,8)
12 (3,9) (3,9)→ (4,8) 0.9528 4.3463 (3,9)

(4,8)→ (3,9) 0.3253 2.1293
13 (4,9) No transition (4,9)
14 (4,10) No transition (4,10)
15 (5,10) No transition (5,10)
16 (1,5,10) No transition (1,5,10)
17 (1,6,10) No transition (1,6,10)
18 (1,6,11) No transition (1,6,11)
19 (1,6,12) (1,6,12)→ (1,7,11) 2.182 9.1882 (1,6,12)

(1,7,11)→ (1,6,12) 0.417 3.5697
20 (1,7,12) No transition (1,7,12)
21 (1,7,13) (1,7,13)→ (2,7,12) 3.429 11.6283 (2,7,12)
22 (2,8,12) No transition (2,8,12)
23 (2,8,13) (2,8,13) → (3,8,12) 2.436 10.9959 (3,8,12)
24 (3,8,13) No transition (3,8,13)
25 (3,9,13) No transition (3,9,13)
26 (3,9,14) (3,9,14)→ (4,9,13) 2.173 11.4266 (4,9,13)
27 (4,9,14) No transition (4,9,14)
28 (4,10,14) No transition (4,10,14)
29 (4,10,15) (4,10,15)→ (5,10,14) 2.142 12.2357 (5,10,14)
30 (5,10,15) (5,10,15)→ (1,5,10,14) 0.616 6.3934 (5,10,15)

(1,5,10,14)→ (5,10,15) 0.243 3.3410

These findings coincide with those for single layer statically screened Coulomb systems. Here a
change from the long-range Coulomb towards a short-range Yukawa potential by variation of the
screening length leads to analogue ground state transitions for the particle numbers N = 10, 12,
19 and N = 21, 23, 26, 29 as reported in [5] and [6], respectively. Further, a comparison of the
ground and metastable states of the single layer Coulomb system (cf table 1 in [16] for N 6 30)
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shows that if and only if an energetically close metastable configuration with higher centre
particle number than in the ground state exists, in fact, a transition of type (A) in the
corresponding bilayer system is found. This underlines the Coulomb-to-dipole transition-
induced density change effecting configurational transitions of type (A). In contrast, transitions
of type (B) are geometry-induced supporting an equally distant, closed packed particle
arrangement.

Among all transitions, the most interesting are those of type (B). As an example, we
study the N = 19 cluster. Here, between d = 0.417 and 2.182, the ‘magic’ configuration
(1,6,12) is replaced by the configuration (1,7,11) which possesses a much lower orientational
order [37]. Therefore, it is interesting to analyse the normal modes of this cluster and their
dependence on d .

3. Collective N-particle modes

Starting from the ground state configurations given in section 2, we are interested in the
collective excitation behaviour in dependence on d . Here, we will focus on the cluster with
N = 19 where, upon changing d, finite size effects are expected to play a key role as the ground
state structure changes between the hexagonally ordered (1,6,12) configuration and the (1,7,11)
circular ring structure as discussed in section 2.

To derive the dynamical properties in the limit of weak excitations, we perform a normal
mode analysis [27], [37]–[39]. For small particle displacements u(t)= r(t)− R around their
ground state position R, expansion of the potential energy U , equation (1), around R leads to

U (r)= U0 +
2N∑
i

∂U

∂ri

∣∣∣∣
R︸ ︷︷ ︸

= 0

ui +
1

2

2N∑
i, j

∂2U

∂ri∂r j

∣∣∣∣
R︸ ︷︷ ︸

=:Hi j

ui u j + · · · , (5)

where U0 is the minimum potential energy and r = (x1, y1, x2, y2, . . .) comprises the in-plane
coordinates of all particles. In the stationary states, the linear (force) term vanishes and the
second-order partial derivatives provide the elements Hi j of the 2 × 2N Hessian matrix. In the
frame of the harmonic approximation, the resulting cluster dynamics is given as a superposition
of these collective (normal) modes statistically weighted according to the eigenvalues of H
which are proportional to the squared mode oscillation frequencies ω2

i . In the following, these
eigenfrequencies will be given in units of ω0/

√
2.

3.1. Classification of normal modes

As a result of the eigenmode computation, we obtain for each stable configuration of the N = 19
cluster a complete set of 76 eigenvalues and eigenvectors. A selection of characteristic and
energetically low-lying eigenvectors for d = dcr = 2.182, i.e. intermediate between Coulomb
and dipole regime, is given in figure 1. As shown in [27], in dipolar bilayer systems the total
number of modes can be divided in two types which will be distinguished by the following
nomenclature:

(+) labels modes with in-phase collective particle motion in both layers, see figures 1(a),
(d), (e), (h)–(o), and
(−) labels modes with anti-phase motion of both layers, see figures 1(b), (c), (f) and (g).

New Journal of Physics 10 (2008) 083031 (http://www.njp.org/)

http://www.njp.org/


7

Selected normal modes of the (1,7,11) configuration

Selected normal modes of the (1,6,12) configuration

(a) ω2
SR+

< 5 · 10−8 (b) ω2
LR−= 2.2 · 10−4 (c) ω2SR−= 0.0048 (d) ω2

V 2+
= 0.4519 (e) ω2

V 2+
= 0.4520

(f) ω2
V 2−= 0.4548 (g) ω2

V 2− = 0.4549 (h) ω2
V 4+= 0.9067 (i) ω2

S+
= 2.000 (j) ω2

B+
= 6.8703

(k) ω2
V 2+ = 0.5866 (l) ω2

SR+
= 0.6507 (m) ω2

V 4+ = 1.3819 (n) ω2
SW+= 1.9842 (o) ω2

B+
= 6.8704

Figure 1. Top view of the eigenvectors of selected characteristic and low-
energetic normal modes for the N = 19 cluster at d = dcr = 2.182 (ordered
by frequency, cf numbers above the figures). The points mark the particle
positions. The differently shaped (and coloured) arrow heads are assigned to the
normal mode eigenvectors in the two different layers and indicate direction and
amplitude of particle motion. Modes with in-/anti-phase motion of both layers
are labelled with a +/− sign, respectively. Top rows: eigenvectors of the (1,7,11)
configuration: (a) inter-shell rotation (SR+), (b) anti-phase layer rotation (LR−),
(c) anti-phase inter-shell rotation (SR−), (d) and (e) in-phase vortex pairs (V2+),
(f) and (g) anti-phase vortex pairs (V2−), (h) asymmetric in-phase 4-vortex mode
(V4+), (i) sloshing mode (S+), (j) breathing mode (B+). Bottom row: eigenvectors
of the (1,6,12) configuration: (k) in-phase vortex pair (V2+), (l) in-phase inter-
shell rotation (SR+), (m) in-phase 4-vortex mode (V4+), (n) in-phase transverse
surface wave (SW+), (o) breathing mode (B+).

Consider first the top rows of figure 1 which show the eigenvectors of the normal modes of
the (1,7,11) configuration. The energetically lowest collective particle motion is in all cases the
centre of mass cluster rotation mode—the in-phase layer rotation LR+. The eigenfrequency of
this directed rotation is ω = 0 as for this motion there is no restoring force. Beside this (trivial)
mode there are three additional rotational modes: (a) inner versus outer inter-shell rotation SR+,
(b) the anti-phase rotation of both layers LR− and (c) anti-phase inter-shell rotation SR−.
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Another set of low frequency modes are four vortex pair modes: (d) in-phase vortex
pair V2+ and (e) (almost) perpendicular oriented vortex pair V2+,7 (f) and (g) two anti-phase
vortex pairs. In the present isotropically confined 2D system, rotationally asymmetric modes
are typically two-fold degenerate with respect to the spatial alignment of the vectors, cf (d),
(e) and (f), (g), respectively. This leads to the fact that, taking into account the two possible
phasings of relative particle motion in both layers, the majority of mode types occur as a set
of four. Considering this, in the following only one mode per set of four is shown as for the
rotational asymmetric, low-energy mode (h) which has the interesting feature that it supports a
single-particle exchange between the inner and outer shell, i.e. a transition from the (1,7,11) to
the (1,6,12) configuration.

In the case of pure radial eigenvectors, such as the (in-phase) breathing mode (j) as coherent
radial motion (compression/expansion) of all particles, there exists one pair of modes only. In
addition to (j) there is an anti-phase breathing mode B− with frequency ω2

B− = 7.9522. Another
‘universal mode’ that is independent of particle number and configuration is the centre of mass
sloshing mode S+ (i) with trap frequency ω0. This mode has a corresponding anti-phase shear
or dipole oscillation mode S−. Both modes are two-fold degenerate.

For all these modes a corresponding mode of the (1,6,12) configuration is found. In
particular: (k) the V2+-mode, (l) the mode of inter-shell rotation SR+, (m) an energetically low
V4+-mode, here supporting a centre directed transition of a particle on the outer shell, and two
further examples of radial modes, (n) a transverse surface wave and (o) the breathing mode.

3.2. Change of normal mode spectrum with layer separation

After the classification of the collective modes, we now consider the oscillation frequency
dependence on the layer separation d of the N = 19 cluster, see figure 2. Of special interest
are thereby the two configuration changes of the ground state and their effect on the collective
dynamical cluster properties.

Starting at small values of d , an increase of the e–h separation leads to a growing
cluster size due to a stronger in-layer particle repulsion resulting from a change of the
effective interaction from dipole to Coulomb. This implicates a gradual decrease of the mode
eigenfrequencies with d since the coupling of all 2N particles becomes less rigid and the
restoring forces weaken. Only the two-fold degenerate centre of mass oscillations are found
to be constant at ω2

S+ = 2, independent of the interlayer coupling strength or even configuration
changes. Confirming [27], the breathing frequency gradually proceeds from ω2

B+ = 10 in the
limit of dipoles (d → 0), to a value of ω2

B+ = 6 in the limit of decoupled layers (d → ∞).
Moreover, modes supporting a transition from the (1,6,12) to the (1,7,11) state and vice versa,
i.e. the eigenmodes (h) and (m) in figure 1, are found at low frequencies, i.e. at low excitation
energies.

As discussed in section 2, the ground state transitions for the N = 19 cluster occur at
the critical values of d (1)cr = 0.417 and d (2)cr = 2.182 and are accompanied by abrupt spectrum
transformations. The strongest effect is observed for the in-phase inter-shell rotation SR+ with
a remarkable jump of the mode frequency ω2

SR+ by more than four orders of magnitude. This
decrease can be explained by comparing the SR+ mode eigenvectors of the (1,7,11) and (1,6,12)

7 The difference of the two in-phase vortex pair modes (d) and (e) lies, besides rotation of the whole vortex pair by
∼π/2, in the alignment of the eigenvectors, which is slightly different. This is due to the non-commensurability of
the (1,7,11) configuration leading to symmetry breaking. As a result the frequencies differ by about1ω2

V2+ = 10−4.
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Figure 2. Complete normal mode spectrum for N = 19 as function of layer
separation d. At d (1)cr = 0.417, the ground state configuration changes from
(1,6,12) to (1,7,11) and at d (2)cr = 2.182 from (1,7,11) to (1,6,12) resulting in a
qualitative change of the mode frequencies. The eigenvectors of the selected
modes are visualized in figure 1. Modes with in-phase (anti-phase) oscillation
of both layers are plotted with dashed (solid) lines. Note that the SR+ mode
continues in the range 1< d < 2.182 with a value smaller than 5 × 10−7. For
notation of modes, see figure 1. The black dash-dotted line corresponds to the
shear oscillation S− of a single dipole (see text).
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configurations, see figures 1(a) and (l). In the latter case, the oscillation vectors of all particles
on the inner shell are directed towards particle positions on the outer shell which strongly
increases the restoring forces in the case of the (1,6,12) configuration resulting in a much higher
frequency ω(1,6,12)

SR+ than ω(1,7,11)
SR+ . The exceptional low frequency ω(1,7,11)

SR+ agrees with results for
single layer Coulomb crystals. In [37], the minimal (nonzero) excitation frequency for (1,7,11)
and the comparable, non-magic (1,7,12) configuration was reported to be that of the inter-shell
rotation with ω2

SR ≈ 10−8. Confirming this, quantum Monte Carlo simulations [14] revealed that
the orientational inter-shell melting temperature of the incommensurate (1,7,12) configuration
is much lower than for the highly symmetric (1,6,12) structure. In particular, a 9 (!) orders of
magnitude difference of the orientational melting temperatures and critical densities of both
configurations was found. This shows that the given classical results are of practical relevance
also for quantum systems at moderate densities.

Moreover, with respect to the dipole-to-Coulomb transition we found that in the dipole
regime at small d the corresponding modes with in-phase and anti-phase oscillation of both
layers are energetically clearly separated, cf SR± and V2± in figure 2. Energetically lowest
are the two (degenerate) in-phase vortex pair oscillations V2+. With a gradual transition to
the limit of uncoupled layers, the e–h attraction and thus the oscillation frequencies of the
anti-phase modes are strongly reduced and converge towards the values of the corresponding
in-phase modes. This is found for the V2− and V2+ modes around d = 2 and for the SR−

and SR+ modes for d > 2.182. As a consequence of the layer decoupling, the LR− anti-phase
layer rotation becomes the energetically lowest of the anti-phase modes. This indicates that the
primary mechanism of decoupling of the electron and hole layers is the interlayer rotation LR−.

We note that the (anti-phase) shear mode S− of a single trapped dipole has the
frequency ω2

S− = 2 + 2/d3 (see black dash-dotted line in figure 2). This arises by expanding
the electron–hole attraction He−h of equation (4) for small displacements u(t) around the ground
state position R. Thereby, the first term in ωS− , being independent of the layer separation d, is
due to the harmonic confinement. In a spatially infinite bilayer system [24], its value depends
on the local potential energy around R and is proportional to the Einstein frequency. The second
term, which is leading for layer separations d � 1, corresponds to the shear oscillation of the
free (unconfined) dipole.

4. Ground states and single-particle spectrum of quantum bilayers

In this section, we present an extension of the classical results of section 2 to quantum bilayers.
Here, in contrast to the classical simulations, the ground state kinetic energy does not vanish
even in the limit of temperatures T → 0 resulting in a finite spatial extension of the particle
orbitals on the scale of the whole N -particle cluster. Hence, fermionic quantum features such as
exchange effects (Pauli exclusion principle) must be included.

In order to treat the e–h bilayer system of equations (1)–(3) quantum mechanically,
we introduce the dimensionless coupling parameter λ of a harmonically confined quantum
system which relates the characteristic Coulomb energy EC = e2/(4πεx0) to the characteristic
confinement energy E∗

0 = h̄ω0

λ=
EC

E∗

0

=
e2

4πεx0h̄ω0
=

x0

aB
, (6)
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where x0 =
√

h̄/(mω0) denotes the oscillator length and aB = 4πεh̄2/(me2) is the effective
electron (hole) Bohr radius. Thus, Hamiltonian (4) including the kinetic energy can be rewritten
in dimensionless form

Ĥe(h) =
1

2

N∑
i=1

(−∇
2
i + r2

i )+
N∑

i< j

λ√
(ri − r j)2

, (7)

Ĥe−h =

Ne∑
i=1

Nh∑
j=1

λ√
(ri − r j)2 + d∗2

, (8)

using the transformation {r → r/x0, E → E/E∗

0 , d∗
→ d/x0}. Note that r and d∗ are measured

in units of x0 and thus explicitly depend on the confinement frequency ω0. The characteristic
energies and length scales of the classical (section 2) and quantum system are related by

E0

E∗

0

= (λ2/2)1/3,
r0

x0
= (2λ)1/3, (9)

so that the layer separations used in the Hamiltonians (3) and (8), respectively, are related by
d∗

= (2λ)1/3 d.
In the limit λ→ 0, both electrons and holes behave as an ideal trapped Fermi gas

independent of the layer separation d∗. For λ→ ∞, it is x0/aB � 1, and quantum effects
vanish. Thus, one recovers classical behaviour and shell configuration changes which coincide
with those in table 1. At finite λ, however, intra- and interlayer interactions, together with the
parabolic confinement, give rise to a complex quantum many-body problem, which is the subject
of the following investigation. In the considered quantum case, ground state properties depend
on the two parameters d∗ and λ. Therefore, the question of whether the additional degree of
freedom will induce additional structural changes arises. To answer this question, we performed
self-consistent Hartree–Fock (SCHF) calculations of two coupled electron and hole layers of
zero thickness, which are discussed in the next two subsections.

4.1. Second quantization formulation

In order to derive mean-field type equations for the e–h bilayer, we rewrite the exact
Hamiltonian (7) and (8) in the second-quantized form Ĥ = Ĥe + Ĥh − Ĥe−h, where

Ĥe(h) =

∫
d2r ψ̂†

e(h)(r) h0(r) ψ̂e(h)(r)

+
1

2

∫∫
d2r d2r̄ ψ̂†

e(h)(r) ψ̂
†
e(h)(r̄)

λ√
(r − r̄)2

ψ̂e(h)(r̄) ψ̂e(h)(r), (10)

Ĥe−h =

∫∫
d2r d2r̄ ψ̂†

e (r) ψ̂
†
h (r̄)

λ√
(r − r̄)2 + d∗2

ψ̂h(r̄) ψ̂e(r), (11)

with h0(r)=
1
2(−∇

2 + r2) denoting the single-particle energy. Further, ψ̂
(†)
e(h)(r) is the

annihilation (creation) operator of spin-polarized electrons and holes at space point r
which satisfy the fermionic anti-commutation relations [ψ̂e(h)(r), ψ̂

†
e(h)(r̄)]+

= δ(r − r̄) and

[ψ̂ (†)
e(h)(r), ψ̂

(†)
e(h)(r̄)]+ = 0, where [ Â, B̂]+ = Â B̂ + B̂ Â. In a Hartree–Fock (HF) approach [40],
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the four field operator products entering equations (10) and (11) are approximated by
sums over double products ψ̂†

e(h)ψ̂ e(h) weighted by the generalized electron (hole) density

matrix ρe(h)(r, r̄)= 〈ψ̂
†
e(h)(r)ψ̂e(h)(r̄)〉e(h), where the expectation value (ensemble average) is

defined as 〈 Â〉e(h) = Tr ρ̂e(h) Â. More precisely, with η, ξ ∈ {e, h}, the 4-operator products are
approximated as

ψ̂†
η (r) ψ̂

†
ξ (r̄) ψ̂ξ (r̄) ψ̂η(r)≈ + ρη(r, r) ψ̂†

ξ (r̄) ψ̂ξ (r̄) + ρξ (r̄, r̄) ψ̂†
η (r) ψ̂η(r)

− δηξ

[
ρη(r, r̄) ψ̂†

ξ (r̄) ψ̂ξ (r) + ρξ (r̄, r) ψ̂†
η (r) ψ̂η(r̄)

]
.

(12)

Here, the first two terms constitute the Hartree term, whereas the last two denote the Fock
(exchange) contribution. The Kronecker delta δηξ assures that there is no exchange between
electrons and holes which is due to the different physical nature of electrons and holes (different
energy bands). Inserting the approximate expression (12) into (10) and (11) allows for an
effective one-particle description according to

Ĥe(h) =

∫∫
d2r d2r̄ ψ̂†

e(h)(r)
{
h0(r) δ(r − r̄)+6HF

e(h)(r, r̄)
}
ψ̂e(h)(r̄), (13)

Ĥe−h =

∫∫
d2r d2r̄ ψ̂†

e (r)
{
6HF

e−h(r, r̄)+6HF
h−e(r, r̄)

}
ψ̂h(r̄), (14)

with the HF self-energies

6HF
e(h)(r, r̄)= λ

∫
d2r ′

ρe(h)(r′, r′)√
(r′ − r)2

δ(r − r̄)− λ
ρe(h)(r, r̄)√
(r − r̄)2

, (15)

6HF
e−h(h−e)(r, r̄)= λ

∫
d2r ′

ρh(e)(r′, r′)√
(r′ − r)2 + d∗2

δ(r − r̄). (16)

For computational reasons, it is convenient to introduce a basis representation for the electron
(hole) field operators,

ψ̂
(†)
e(h)(r)=

∑
i

ϕ
(∗)

i (r) â(†)e(h),i, i ∈ {0, 1, 2, . . .}, (17)

where the one-particle orbitals or wave functions ϕi(r) form an orthonormal complete set and
â(†)e(h),i is the annihilation (creation) operator of a particle on the level i . Applying the basis
expansion (17) to the equations (13) and (14) leads to the matrix representation of the bilayer
Hamiltonian (1) which will be given in the following section, cf equations (18)–(20).

4.2. SCHF simulation technique

In matrix representation, the mean-field Hamiltonian for the bilayer system corresponding to
the initial equations (1)–(3) reads

he(h)
i j = h0

i j + he−e(h−h)
i j − he−h(h−e)

i j , (18)

he−e(h−h)
i j = λ

∑
kl

(
w

e−e(h−h)
i j,kl −w

e−e(h−h)
il,k j

)
ρ

e(h)
kl , (19)
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he−h(h−e)
i j = λ

∑
kl

w
e−h(h−e)
i j,kl ρ

h(e)
kl , (20)

with the single-particle (orbital) quantum numbers i and j (k and l), he(h)
i j being the electron

(hole) total energy, h0
i j the single-particle (kinetic and confinement) energy and he−e(h−h)

i j (he−h(h−e)
i j )

the intra (inter) layer interactions in mean-field approximation. Further, ρe(h)
i j = 〈â†

e(h),i âe(h), j〉

denotes the zero-temperature density matrix of electrons and holes with respect to the
one-particle basis ϕi(r). In equation (19), both the Hartree and the Fock contribution appear,
whereas in equation (20) only the Hartree term enters.

The explicit expression for the single-electron (-hole) integral is

h0
i j =

1

2

∫
d2r ϕ∗

i (r)(−∇
2 + r2)ϕ j(r), (21)

and the two-electron (two-hole) and electron–hole integrals are given by

w
e−e(h−h)
i j,kl =

∫∫
d2r d2r̄

ϕ∗

i (r) ϕ
∗

k (r̄)ϕ j(r)ϕl(r̄)√
(r − r̄)2 +α∗2

, (22)

w
e−h(h−e)
i j,kl =

∫∫
d2r d2r̄

ϕ∗

i (r) ϕ
∗

k (r̄) ϕ j(r) ϕl(r̄)√
(r − r̄)2 + d∗2

, (23)

where α∗
→ 0 is utilized to avoid the Coulomb singularity for r → r̄. A small parameter of

α∗ . 0.01 has been found to show convergence for all quantities of interest. Details will be
given elsewhere [41].

For numerical implementation of the SCHF procedure yielding the eigenfunctions φe(h)
i (r)

(HF orbitals) and eigenenergies εe(h)
i (HF energies) of Hamiltonian (18), we have chosen the

orthonormal Cartesian (2D) harmonic oscillator states

ϕm,n(r)=
e−(x2+y2)/2

√
2m+n m! n!π

Hm(x)Hn(y), (24)

with single-particle quantum numbers i = (m, n), r = (x, y), the Hermite polynomials Hm(x)
and (m + 1)-fold degenerate energy eigenvalues εm,n = m + n + 1, where m, n ∈ {0, 1, 2, . . .}.
The HF orbitals, expanded in the form

φ
e(h)
i (r)=

nb−1∑
j=0

ce(h)
j i ϕ j(r), (25)

with coefficients ce(h)
i j ∈ R and respective energies εe(h)

i , are obtained by iteratively solving the
self-consistent Roothaan–Hall equations [42]

nb−1∑
k=0

he(h)
ik ce(h)

k j − ε
e(h)
j ce(h)

i j = 0, (26)

at fixed dimension nb × nb (i = 0, 1, . . . , nb − 1) according to standard techniques, for details
see e.g. [40] and references therein. The resulting electron (hole) density ρe(h)

d∗,λ(r) corresponding

New Journal of Physics 10 (2008) 083031 (http://www.njp.org/)

http://www.njp.org/


14

to given values of d∗ and λ is defined as

ρ
e(h)
d∗,λ(r)=

N−1∑
k=0

φ
e(h)
k,d∗,λ(r)=

N−1∑
k=0

nb−1∑
l=0

ce(h)
lk,d∗,λ ϕl(r), (27)

where each HF orbital k is occupied by a single particle only.
For the e–h bilayers with N 6 10, we used nb = 50 of the energetically lowest oscillator

functions ϕm,n(r) to expand the HF orbitals, for N = 12 we took nb = 55 which was sufficient
to obtain convergent results. Due to the electron–hole attraction the cluster size is reduced
compared to that of a single layer Coulomb cluster. This favours the use of a moderate number
of basis functions to ensure convergence8.

4.3. Transition from the ideal Fermi gas towards the classical limit

The aim of this part is to investigate the transition from a strongly degenerate quantum system,
i.e. λ= 0, to the classical limit λ→ ∞. To give a reasonable estimate for the range at which
the classical ground state results become valid, we consider a system with N = 6 electrons and
holes at an intermediate layer separation of d∗

= 1.0. Of special interest will be the central spot
of the (1,5) configuration which can most directly be assigned to a classical particle position.

In contrast to the classical results the HF calculations fully take into account the wave
nature of electrons and holes. The quantum many-body effects are evident already at λ= 0.
In the classical case, the total energy in the ground state is zero (all particles sit in the bottom
of the trap). In the quantum case, this is prevented by the Pauli principle. Orbital-resolved HF
calculations as function of coupling parameter λ are displayed in figure 3. Here, the right panel
shows the N -particle density ρe(h)

d∗,λ(r) and the six populated single-particle orbitals φe(h)
i,d∗,λ(r)

for moderate (λ1 = 5.0), intermediate (λ2 = 15.0) and strong (λ3 = 35.0) coupling. The SCHF
results reveal that, in particular for small values of λ, obviously several orbitals contribute
collectively to the different high-density spots which unambiguously determine the cluster
configuration.

Concerning the lowest orbital i = 0, with an increase of λ, the overlap with the higher
orbitals vanishes and the wave function becomes localized when λ exceeds a value of 35. In
contrast, in the investigated range of λ6 40 the other particles remain, independently of the
observed density modulation, delocalized as can be seen on the orbital pictures. The transition
towards the limit of strong correlations can be estimated from the e–h-interaction energy

ε
(i=0)
e−h (λ)= −

∫∫
d2rd2r̄ |φe

i=0(r)|
2 λ√

(r − r̄)2 + d∗2
|φh

i=0(r̄)|
2, (28)

of the electron and hole in the lowest orbital. The upper diagram in the left panel of figure 3
displays the λ-dependence for four different approximations. For the ideal system, λ= 0,
electron and hole are not bound and ε(i=0)

e–h vanishes. The black solid line shows the interaction
energy (28) obtained from the SCHF simulations which for λ� 1 agrees with perturbation
theory (PT), where a linear λ-dependence follows from substituting the ideal wave function
ϕ0,0(r), see equation (24), for φe(h)

i=0 (r) in equation (28).

8 Note that the additional centre particle in the case of N = 19 strongly increases the cluster size so that essentially
more basis functions (nb & 90) are required to ensure convergence. As the problem determining the two-particle
integrals, equations (22) and (23), scales with O(n4

b) a computation is limited by memory requirements.
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∗
©

Figure 3. Ground state of the N = 6 cluster as function of interaction strength
λ for fixed layer separation d∗

= 1.0. Right: accumulated N -particle density
ρ

e(h)
d∗,λ(r), on top, and corresponding single-particle HF orbitals φe(h)

i,d∗,λ(r) for
three different coupling parameters λ. The different signs of the wave function
(blue and orange) are separated by white areas of zero amplitude, whereas
areas of maximum amplitude are black. Note that the six high-density spots
of the N -particle density do not necessarily correspond to the single particles
themselves as the configuration appears as a superposition of all orbitals. Left
(top): electron–hole interaction energy ε j=0

e−h , equation (28), of the centre electron
and hole states for different approximations and (bottom) HF energy of occupied
levels εe(h)

i as function of λ.
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For λ� 1, a semi-classical result can be derived. Starting from the classical ground
state configuration (1,5) the outer particles, together with the confinement, create an effective
potential for both centre particles which can be harmonically approximated. The direct quantum
mechanical solution of the harmonic problem provides a finite Gaussian electron (hole)
extension of width σ = σe = σh. Hence, the e–h-interaction energy (28) of the inner particles
can be computed in a semi-classical way using φe(h)

i=0 (r)= (σ/π)1/4 e−σ(x2+y2)/2. In the strongly
correlated regime, starting at λ> 30, the semi-classical and SCHF solution coincide very well.

However, in an intermediate coupling range, λ≈ 15, the e–h interaction energy is reduced
compared to the semi-classical solution which reflects the fact that the orbital i = 0 substantially
deviates from a Gaussian, cf the five side maxima of the orbital i = 0 for λ2 = 15 in figure 3.
With increase of λ this Gaussian becomes more and more peaked describing the transition
to the classical limit |φ

e(h)
i=0 (r)|

2
→ δ(r)9. Despite the good agreement with the semi-classical

approximation, in the whole investigated range of λ < 40 the system is found to be essentially
non-classical. This becomes evident by comparing with the pure classical result ε(i=0)

e–h = −λ/d∗

which neglects any finite particle extension. Concerning all populated HF orbitals the transition
towards the classical limit with increasing λ is shown in the lower left diagram of figure 3 in
terms of the orbital energies εe(h)

i=(m,n). As mentioned in section 4.2, the harmonically confined
ideal Fermi gas (λ= 0) is (m + 1)-fold degenerate with m, n ∈ {0, 1, . . .}. Around λ> 15 the
energy of the outer particles converges towards a five-fold degenerate energy which is separated
from the (lower) energy of the centre particle.

4.4. Quantum ground state configurations and structural transitions for N = 10

Beside the higher numerical effort of a single SCHF computation compared to its classical
analogue, a complete study of the ground states requires, in addition to d and N , the exploration
of λ as a third degree of freedom. To overcome this problem and to reduce the task, we limit
our investigation to the two-shell clusters N = 10 and N = 12 which were found to exhibit rich
ground state properties in the classical limit.

The analysis was done by systematically scanning the phase diagram for fixed values
of d∗ ranging from 0.1 to 10.0. For each of these d∗ values we start from the ideal system
at λ= 0 and increment the coupling parameter stepwise by δλ= 0.05. The convergence of
each step is ensured by an adaptive, precision controlled iteration number with up to 2500
iterations of the Roothaan–Hall equations (26) per increment δλ. The described procedure
allows for a systematic investigation of the phase diagram by a gradual transition from the ideal
Fermi to the strongly coupled system. To verify the results obtained, the ground states with
respect to individual points in the phase diagram were recomputed by starting from a random
distribution as well as by decreasing the temperature of an initial (high temperature) thermal
distribution [41]. All procedures are found to yield the same HF orbitals (energies) and thus the
same N -particle densities and shell structures.

The results for the N = 10 cluster are presented in figure 4. The ground state phase diagram
can be divided into four domains (left panel of figure 4):

(i) At small λ a weakly correlated degenerate Fermi liquid is observed within each layer (blue
area in the left figure). The observed electron (hole) density is rotationally symmetric and

9 In the mean-field Hamiltonian (13) and (14) the classical limit is obtained by replacing ρe(h)(r, r′)→

δ(r − r′)
∑Ne(h)

i=1 δ(r − ri ).
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Figure 4. Left: (λ, d∗)-phase diagram for the N = 10 bilayer in HF
approximation. The configuration (R, 7) means delocalization of charges on
the inner ring R. The black solid line indicates the classical ground state
transition (3, 7)→ (2, 8) which occurs at dcr = 1.0116r0 from left to right. The
red arrow points out an inverse transition compared to the classical (2, 8)→

(3, 7) crossing. The two dashed lines indicate the path when changing ω0 at
fixed layer separation d for a germanium (ε = 16ε0, m∗

e(h) = 0.25me) quantum-
well structure, see equation (29); ω1 = 926 GHz, ω2 = 9.26 THz, ω3 = 98 GHz.
Right: electron (hole) density ρe(h)

d∗,λ(r) at characteristic points marked (a) to (h) in
the phase diagram. The side length of the contour plots is 9x0. The open circles
mark the corresponding classical ground state particle positions. The rightmost
column displays the corresponding angle-averaged radial density profiles for
d∗

= 0.5 (4.0), dashed (red) line.

exhibits non-monotonic radial modulations of an (nearly) ideal trapped Fermi gas. The
proper density distributions for d∗

1 = 0.5 and d∗

2 = 4.0 are shown in figures 4(a) and (e),
respectively.

(ii) At higher λ two shells separate, see points (b), (f) within the red area in the phase diagram
and the corresponding density profile (j). While on the inner ring the electron (hole) density
is still isotropic, the density on the outer shell becomes angle-modulated and reveals seven
high-density spots. The integrated position probability density on the inner and outer shells
is close to 3 and 7, respectively. The configuration will be referred to in the following as
(R, 7) as on the inner ring R no localized density peaks in ρe(h)

d∗,λ(r) are present. Hence the
nomenclature does not indicate the particle numbers, but the number of distinct density
peaks, as the particle orbitals are delocalized over the entire cluster, see discussion in
sections 4.3 and 4.6.
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(iii) Further increase of the coupling parameter leads to more pronounced (concentric) shells.
In particular, the inner radial density decreases which is accompanied by the formation of
angular density modulation, see figures 4(c) and (g). The shell configuration is found to be
(3,7).

(iv) At a certain value λcr(d∗), the bilayer system jumps from the (3,7) into the (2,8) shell
configuration (green area in the phase diagram), see figures 4(g) and (h).

The general behaviour of (i)–(iii) is independent of the layer separation d∗. The localized (3,7)
configuration (iii) emerges in two steps by rotational symmetry breaking from the Fermi liquid
(i) maintaining a higher density on the inner than on the outer ring. However, an increase of d∗

beyond unity leads, by weakening of the interlayer attraction, to a repulsive intralayer and thus
Coulomb-dominated coupling. Consequently, the cluster size increases, compare the density
plots of figure 4(a) versus (e), 4(b) versus (f), etc. Moreover, for a fixed λ� 1, the dipole-
to-Coulomb transition towards the strongly correlated Coulomb regime induces the (2,8) shell
configuration [28] which is observed when d∗ is increased from 0.5 to 4.0, see figure 4(d) versus
(h). This transition reduces the inner-shell density, see figure 4 right (red versus dashed lines).

Further, at a fixed d∗ > 2.0 an increase of λ leads to a purely coupling-induced
configuration change (3,7) → (2,8), see details in section 4.6. For d∗

= 10, both layers are
already weakly coupled and become completely decoupled when d∗ is further increased.
Consequently, the critical (blue, red and green) curves in the phase diagram converge
towards horizontal lines. Note that d∗ is measured in units of x0 and thus depends on the
confinement frequency ω0. This implies for an experimental setup, e.g. a double quantum-well
heterostructure with fixed physical layer separation d, that one traces hyperbolas of the form

λ(d∗)=
d e2 m∗

e(h)

4πε h̄2

1

d∗(ω0)
, (29)

when changing the trap frequency ω0, see the dashed lines in the phase diagram of figure 4. The
larger the physical layer separation d (or effective particle mass m∗

e(h)), the more the hyperbola
shifts to larger values of d∗. Interestingly, e.g. for a germanium based quantum well, at fixed
layer separation d = 1375 Å, the ground state structure of the quantum bilayer can be externally
controlled by change of ω0 only.

A comparison of the classical particle positions (open circles in figures 4(a)–(h)), according
to equations (9), with the shells and high-density spots of the HF calculations plotted in
figure 4 reveals a good agreement. Larger cluster sizes compared to the classical case for
small λ are explained by repulsive fermionic exchange interactions. Further, the bold black
line in the phase diagram indicates the classical transition from (3,7) to (2,8) which occurs at
dcr = 1.0116r0 when crossing the line from left to right. It is found that the classical line gives
a reasonable estimate also for the transition in the quantum bilayer system. Hence the trend,
found in section 2 for the classical bilayer system, of centre density reduction with increasing
d also holds in the case of a strongly correlated quantum system, where the orbitals extend
over several classical particle positions. In the classical limit, i.e. at very large λ (outside of
figure 4), the configuration boundary (3,7)↔ (2,8) (green curve) and the classical result (black
curve) converge. Nevertheless, for intermediate values of λ the red arrow indicates a remarkable
point in the phase diagram where the structural transition in the classical and quantum bilayer
proceeds in opposite direction. The single-particle orbitals for this transition will be analysed in
section 4.6.
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Figure 5. (λ, d∗)-phase diagram showing the quantum shell structures found
for the N = 12 bilayer in HF approximation. The shown electron (hole)
densities ρe(h)

d∗,λ(r) corresponding to tuples (d) (d∗

1 , λ1)= (0.5, 5.9), (c) (d∗

2 , λ2)=

(0.75, 3.95), (b) (d∗

3 , λ3)= (1.25, 2.35) and (a) (d∗

4 , λ4)= (2.0, 1.45). The
frequenciesw1,2 are as indicated in figure 4. The two black solid lines indicate the
classical configuration transitions (3, 9)→ (4, 8) and (4, 8)→ (3, 9) at d (1)cr =

0.9528r0 and d (2)cr = 0.3253r0, respectively, from left to right. In the investigated
range λ6 15 these transitions were not observed in the quantum bilayer. The
right two columns show the (radial) density of the four points (a)–(d) marked in
the phase diagram for d = 100 Å.

Further, an unusual (2,8) configuration is shown for λ4 = 12.0 and d∗

2 = 4.0 in figure 4(h),
where the particle arrangement differs from the classical system. Such a configuration was also
found in [28] for a classical single layer system with 1/rα pair interaction and α 6 0.94. Thus,
the anomalous configuration underlines the effect of the Fermi repulsion in addition to the
intralayer Coulomb interaction. However, an increase of λ leads to a reduction of the Fermi
effect and wave function overlap and a (2,8) configuration corresponding to the classical one is
found.

4.5. Quantum ground state configurations and structural transitions for N = 12

In figure 5, we present the (λ, d∗)-phase diagram for N = 12 electrons and holes analogous to
figure 4 for N = 10. At fixed (physical) layer separation d = 100 Å, one passes through four
different domains of the phase diagram when the trap frequency is decreased from ω2 towards
ω1 (see left panel of figure 5):

(i) Analogously to the N = 10 cluster at small λ, a weakly correlated circular symmetric Fermi
liquid exists within each layer, see point (a) in the blue area of the phase diagram.
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(ii) A decrease of the trap frequency to point (b) is accompanied by a structural change to a
six-fold rotational cluster symmetry with an outer shape exhibiting hexagonal symmetry.
This phase only establishes in the regime of a short-range in-layer potential, i.e. d∗ 6 2. In
the Coulomb case of weakly coupled layers this liquid-like state is not found.

(iii) If the confinement strength is further reduced, see point (c), the cluster passes over to a
nine-fold rotational symmetry. While in the cluster core a ring R of delocalized density is
observed, the outer nine high-density spots are situated on a perfectly circular ring, which
reproduces the symmetry of the external confinement potential.

(iv) In the limit of small d∗ and λ→ ∞, see figure 5(d), where the in-layer interaction becomes
extremely short-range, a commensurate closed packed structure with three-fold rotational
symmetry similar to that known from classical dipole systems [28] is found.

Consequently, during the coupling-induced transition from (i) to (iv) the cluster size decreases
slightly as the effective in-layer interaction becomes short-ranged. In analogy to N = 10, the
liquid-like state (i) as well as the (R, 9) configuration (iii) are found for all values of d∗. The
additional configuration (ii), missing in the case of N = 10, is limited to a range of strong
interlayer attraction.

In contrast to N = 10, in total two transitions as function of d were found in the classical
N = 12 system, cf table 1. However, in the investigated quantum regime, λ6 15, we observe no
configuration changes corresponding to the classical transitions (3,9)↔ (4,8), see black lines
d (1)cr = 0.9528r0 and d (2)cr = 0.3253r0 in figure 5 (left). Hence the two ground state transitions
(3,9)→ (4,8) and (4,8)→ (3,9) of type (A) and (B), introduced in section 2, are expected to
occur outside of figure 5 in the (semi-)classical region only.

4.6. Single-particle orbitals and single-particle spectrum

In both previous subsections, we discussed the phase diagram based on the N -particle densities.
In this part, we pursue the question of how the single-particle spectrum evolves during the
transition from (3,7) to (2,8) for the N = 10 cluster, see red arrow in figure 4 (left). At fixed
d∗

= 3.0, the configurational transition occurs when changing the coupling parameter from
λ1 = 12 to λ2 = 13. For this transition, the spatially resolved orbitals φe(h)

i,d∗,λ(r) and the N -particle
density ρe(h)

d∗,λ(r) are collected in figure 6 together with the corresponding one-particle HF spectra
ε

e(h)
i for both coupling parameters λ1 and λ2.

As mentioned in section 4.4, the configuration change (2,8)λ1 ↔ (3,7)λ2 is reversed along
the red arrow in figure 4 compared with the respective classical transition. Similar to the N = 6
cluster discussed in figure 3, the HF orbitals generally extend over several classical particle
positions.

In situation (a), i.e. λ1 = 12, the energetically highest orbitals i = 7, 8 and 9 contribute
most to the inner-shell density showing three high-density spots. On the other hand, in (b),
i.e. λ2 = 13, the orbitals are completely rearranged with the two inner-shell density spots being
now formed mainly from the orbitals 3 and 8, leading to embedded orbital energies εe(h)

3 and
ε

e(h)
8 within the spectrum, cf the black circles in the energy term schemes. In addition, all orbital

energies of the (2,8) configuration are enclosed in a narrower energy interval compared to (3,7),
whereas the energy spectra do not reveal any degeneracy. However, for (2,8) the spectrum
separates into two parts of similar energetic substructure with orbital energies εe(h)

0 to εe(h)
4

and εe(h)
5 to εe(h)

9 , respectively. Accompanying this fact, one clearly recognizes a change and an
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Figure 6. Left: HF energy eigenvalues εe(h)
i corresponding to the spatial orbitals

φ
e(h)
i,d∗,λ(r). (a) Bilayer density ρe(h)

d∗,λ(r) and orbitals for N = 10 at d∗
= 3.0 and

λ1 = 12.0, (b) λ2 = 13.0. The black dots denote the orbitals which contribute
most to the inner-shell high-density spots. While the inner shell of the (3,7)
configuration is essentially built up from the 3 highest orbitals 7, 8 and 9, the
inner shell of the (2,8) configuration is mostly formed from the orbitals 3 and
8. Right: single-particle orbitals φe(h)

i,d∗,λ(r) for the cases (a) and (b). The different
signs of the wave function (blue and orange) are separated by white areas of zero
amplitude, whereas areas of maximum amplitude are black.

increase of the orbital symmetry when crossing over from the (3,7) to the (2,8) configuration.
In contrast to (a) the rotational and specular (mirror) symmetry of φe(h)

i,d∗,λ(r) with respect to
perpendicular space axes in (b) is increased. Moreover, the structure of the nodes (white lines
with zero amplitude in figure 6 right) of the HF orbitals changes, making the symmetry axes
obvious. Particularly, inner and outer shell are clearly more separated by nodes in the (2,8)
configuration.

5. Discussion and outlook

In this paper, we have considered ground state and dynamical properties of mesoscopic
classical and quantum mass-symmetric electron–hole bilayers. In particular, we focused on the
dependence of the properties on the layer separation d. The main effect is the gradual transition
from systems with Coulomb interaction in the layers (at large d) to a system with short-range
dipole interaction (at small d). Based on extensive classical molecular dynamics calculations
we have shown that, with variation of d, several clusters show a sudden change of the ground
state shell configuration, including several cases of re-entrant configuration changes which are
related to symmetry properties. Furthermore, we have analysed the classical normal modes of
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these bilayers and studied the d-dependence of the spectrum for N = 19 as a representative
example.

A striking result is the energy jump of the inter-shell rotation mode frequency ω2
SR+ by

more than four orders of magnitude when the ‘magic’ ground state configuration (1,6,12) is
replaced by (1,7,11). This leads us to suggest a new possibility for external control of inter-shell
rotation by exerting strain on the bilayer system (or alternatively by changing the trap frequency
ω0 by an external electric field [33]), i.e. a scheme which does not require changing particle
number [43, 44]. Preparing a sample with d slightly above dcr, rapid compression initiates a
ground state transition and thus allows one to ‘turn on’ the inter-shell rotation of composite
dipoles—excitons. Combined with optical excitation this may have interesting applications
manipulating coherent emission.

In the second part of this paper, we performed a quantum many-body calculation of the
same system within the frame of a SCHF approach. In the low-density limit, where the particles
are well localized, classical properties are recovered. On the other hand, upon density increase
and growing particle overlap quantum diffraction and exchange effects become important. This
has significant consequences for the ground state phase diagram which is much richer than the
classical one. There appear new structural phases which are characterized by charge localization
on the outer shell coexisting with delocalization on the inner shell. Also, there exist parameter
ranges where the classical and quantum systems show opposite shell configuration changes.
The main advantage of the quantum many-body calculations is that they yield the complete
single-particle energy spectrum and orbital-resolved ground states. We have shown that, even in
the Wigner crystal phase where the density shows strong peaks, single peaks do not one-to-one
correspond to single particles. On the contrary, in general, several orbitals contribute to a single
density peak.

We note that the present quantum results correspond only to the simplest representation
of many-body theory—the HF approximation. Thereby all pair interactions have been self-
consistently included and direct and exchange terms are treated on the same footing. We
have performed several comparisons with first-principle path integral Monte Carlo (PIMC)
simulations where, however, the control of statistical fluctuations and the exact treatment of
fermions are computationally demanding, especially for temperatures T → 0. Nevertheless, the
result has shown that the correct shell configurations are observed and that the HF ground state
energies are in essential agreement with the PIMC simulations which fully include correlation
effects. This leads us to expect that the quantum results reported in this paper will not change
qualitatively when better approximations are considered. Naturally, the first improvement to
be made is the inclusion of scattering effects on the level of the second Born approximation
of nonequilibrium Green’s functions theory, as was done e.g. in [45]–[47]. We are presently
developing these calculations which will be reported elsewhere.
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