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Dynamics of strongly correlated ions in a partially

ionized quantum plasma

P. Ludwig, M. Bonitz, and H. Kählert
Institut für Theoretische Physik und Astrophysik, Christian-Albrechts Universität zu Kiel,
24098 Kiel, Germany

J.W. Dufty
Department of Physics, University of Florida, Gainesville, FL 32611, USA

Abstract. A scheme which allows to compute the dynamics of strongly correlated classical
ions embedded into a partially ionized quantum plasma by first principles molecular dynamics
is presented. The dynamically screened dust approach of Joyce and Lampe [Phys. Rev. Lett.
88, 095006 (2002] is generalized to quantum systems. The electrons are treated fully quantum-
mechanically taking into account their dynamical screening of the ion-ion interaction in linear
response on the basis of an extended Mermin formula. The scheme allows to include the effect
of the electron dynamics, electron streaming, wake effects and electron magnetization.

1. Introduction
Strong correlation effects in ensembles of charged particles are of high importance in many fields
of physics, including dense plasmas, e.g. [1, 2], the electron-hole plasma or electrons in quantum
dots [3], for a recent overview see [4] and references therein. The present paper is devoted to
a strongly coupled mass-asymmetric two-component plasma where only the heavy component
(typically the ions) is strongly coupled whereas the light component (e.g. electrons) is weakly
coupled. Such a situation is expected in various compact astrophysical systems including white
dwarf stars or the crust of neutron stars where one expects ion crystallization [5]. Another
relevant situation are dense laboratory plasmas produced by laser or ion beam irradiation of
matter where initially again a strongly coupled ion plasma is formed – so-called “warm dense
matter”, for a recent overview see the article by Gericke et al. in this volume [6]. A sketch of
the density-temperature plane in this parameter range is shown in Fig. 1.

The parameters of interest for the present work are indicated by the shaded area in Fig. 1.
There the ions (electrons) are classical (quantum) characterized by a degeneracy parameter
χa = naΛ3

a smaller (larger) than unity, with the DeBroglie wave length Λa = h/(2πmakBTa)1/2.
Our main interest is to describe strong ion coupling characterized by Γi = q2

i /(r̄ikBTi) > 1,
whereas the quantum coupling parameter (Brueckner parameter) of the electrons is small,
rse = r̄e/aB � 1. In recent years there have been numerous attempts to develop simulations for
such systems, based on path integral Monte Carlo (PIMC) [7, 8], quantum molecular dynamics
(QMD) [9, 10] or the Wigner formalism (WMD) [11]. The best dynamical results so far have
been obtained from QMD, however, these simulations involve a density functional treatment
of the electrons which is very time-consuming. Moreover, current versions usually neglect the
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Figure 1. Phase diagram of a two-component plasma of electrons and singly charged ions in
thermodynamic equilibrium with a few astrophysical examples (WDM denotes “warm dense
matter”). The line χe = 1 [χi = 1] separates the region of classical (upper left) and quantum
(lower right) behavior of the electrons [ions]. Also, the lines of constant classical (Γ) and quantum
(rs) coupling strength are shown. The present model applies to the shaded area.

dynamics of the electron subsystem. However, for dense electron-ion plasmas dynamics of the
electrons, in particular dynamical screening, is expected to be important.

The approach of this paper includes these effects. It takes advantage of the weak electron
coupling in the plasma phase. At the same time the ion dynamics are treated exactly, via
semiclassical molecular dynamics. The model and approximations leading to effective Newtonian
equations for the ions are introduced in Sec. 2. In Sec. 3 we derive the effective ion-ion pair
potential which its dynamically screened by the electrons. The Mermin dielectric function is
recalled in Sec. 4. A detailed derivation in the frame of quantum kinetic theory is given in the
appendix. Results are summarized in Sec. 5.

2. Basic equations and approximations
The nonequilibrium dynamics of the ions in a partially ionized plasma consisting of electrons
(e), ions (i), and neutrals (n) can be described by the reduced density operator for the ions,
given by [12, 13]

i�
∂F̂i(1, .., Ni)

∂t
−

[
Ĥi(1, .., Ni), F̂i(1, .., Ni)

]
=

∑
b=e,n

Ni∑
k=1

nbTr2b

[
V̂ib(k, 2b), F̂ib(1, .., Ni; 2b)

]
, (1)

where b = e, n, and F̂ib(1, .., Ni; 2b) is the joint density operator for Ni ions and one particle of
type b. Ĥi(1, .., Ni) is the hamiltonian for the ions in the presence of an external field (φ,A)
and their mutual interactions

Ĥi(1, .., Ni) =
Ni∑

k=1

[
1

2mk

(
�

i
∇k − ei

c
A(rk, t)

)2

+ eφ (rk, t)

]
+
1
2

Ni∑
k �=�

Vii(|rk − r�|), (2)
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where A and φ denote the vector and scalar potential of an external electromagnetic field,
and V̂ib is the operator of binary interactions between an ion and particle of type b. Quantum
exchange effects of the ions will be irrelevant and are neglected in (1).

We now start to simplify this equation and to determine effective Newtonian equations
of motion for the ions. Since the electrons are assumed strongly degenerate and weakly
coupled, also the electron-ion interaction on the r.h.s. of (1) is weak and F̂ie(1, .., Ni; 2e) �
F̂i(1, .., Ni)F̂e(2e). In this approximation the electron contribution to the r.h.s. becomes
neTr2e

[
V̂ie(k, 2e), F̂ib(1, .., Ni; 2e)

]
�

[
Ŵie(k), F̂i(1, .., Ni)

]
, where we defined the mean

field (Hartree potential) for the ions which is created by the electrons, Ŵie(k) ≡
neTr2e V̂ie(k, 2e)F̂e(2e). This gives rise to an effective single particle Hamiltonian for each ion̂̃
H i(1) = Ĥi(1) + Ŵie(1) [here Ĥi(1) denotes the expression under the first sum in Eq. (2)] so
that equation (1) becomes

i�
∂F̂i(1, .., Ni)

∂t
−

[ ̂̃
H i(1, .., Ni), F̂i(1, .., Ni)

]
=

Ni∑
k=1

nnTr2n

[
V̂in(k, 2n), F̂in(1, .., Ni; 2n)

]
, (3)

where ̂̃
H i(1, .., Ni) is given as in (2) except with the single particle hamiltonians

̂̃
H i(k) replacing

Ĥi(1). The l.h.s describes the effection ion dynamics driven by ion-ion and mean field ion-
electron interactions, and the r.h.s. is due to the interactions with the neutrals.

Since the coupling between ions and neutrals is expected to be much weaker than between
ions, an approximate treatment of the neutrals can be applied. In the following, we assume
that the neutrals are close to thermodynamic equilibrium. Then the collision integral between
ions and neutrals, Iin, can be treated using a Fokker-Planck type integral with an effective ion-
neutral collision frequency νin and a diffusion coefficient Dn. The two coefficients are used as
input parameters to our model. Next we take into account that the ions are classical (we briefly
discuss the inclusion of quantum corrections in Sec. 5) and perform the classical limit in Eq. (3).
This leads to a classical kinetic equation for the phase space distribution and possible quantum
corrections [12], which is equivalent to (its characteristics are) the one set of the following
Newton’s equations

dpk

dt
=

(
−dWie(r)

dr
+ eiE(r, t) +

ei

c
[vk × B(r, t)]

) ∣∣
r=rk

+ Fi,n(rk,pk, t), k = 1, . . . , Ni, (4)

dpk

dt
= − d

dr

(
V eff

i (r, t) + eiφ
ext(r, t)

) ∣∣
r=rk

+ Fi,n(rk,pk, t), k = 1, . . . , Ni, (5)

The first line corresponds to the general case of an electromagnetic field (E,B) produced by
external sources and the ions which follows from the solution of Maxwell’s equations. The
potential Wie produced by the electrons has been separated for clarity. The second line
corresponds to the case of a pure electrostatic field which is composed by an external potential
φext plus the total effective ion-ion interaction energy V eff

i (r, t) = ei
∑Ni

l=1 φl(r, t). Here φl is the
electrostatic potential produced by ion “l” in the partially ionized plasma which will be computed
in Sec. 3. Finally, Fi,n(rk,pk) describes the force acting on ion “k” from the neutral particles.
Due to the weak coupling between ions and neutrals in the plasma this effect is expected to be
of minor importance. Starting from the Fokker-Planck form of the collision term Iin the effect
of the neutrals in the classical equations of motion will be a combination of a friction force plus
a random force y, i.e., Fi,n(r,p, t) = −νinp+y(t) where the amplitude of the random force will
be proportional to

√
Dn.

In Eqs. (4), (5) we have fully retained ion-ion correlations and fluctuations and are, thus,
able to treat strong correlation effects in principle exactly. The quality of the solutions thereby
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depends on the quality of the potential energy V eff
i which is affected (screened) by the electrons.

Of particular interest for us is to include nonequilibrium situations in warm dense matter such
as streaming electrons and ions, particle beams and so on. Then a full dynamic treatment of
the pair interaction is crucial which we discuss now.

3. Dynamically screened ion-ion pair potential
Let us now compute the potential of a single ion moving relative to the electrons, taking into
account the dielectric properties of the (unmagnetized) plasma. We start with the case of a
classical charged particle, e.g. [14], and then generalize the result to quantum particles.

The Poisson equation for a polarizable medium reads (n(r) is the number density of charged
particles and nk its Fourier component)

divD(r, t) = 4πeana(r, t), (6)

which, in Fourier space, becomes ik · Dk(t) = 4πeanak(t). The electrostatic potential φ
created by the charge density on the right is E(r) = −∇φ(r), corresponding, in Fourier
space, to Ek = −ik · φk. Together with the electrodynamic definition of the dielectric tensor,
Dk,i =

∑
j εk,ijEk,j , i, j = 1, 2, 3, and Eq. (6) we obtain

φk(ω) =
4πeanak(ω)∑
ij kikjεk,ij(ω)

. (7)

Consider now the case of a classical point charge “a” with initial position r(0) = r0a, moving
with constant velocity va (relative to the carriers creating the dielectric function). Then

na(r, t) = δ[r − r0a − vat], (8)

with the Fourier representation

nak(ω) = 2πe−ikr0δ[ω − kva]. (9)

Inserting this result into (7) and performing the back transform we obtain

φ(r, t;va) = ea

∫
d3k

2π2

eik(r−[r0a+vat])∑
ij kikjεk,ij(kva)

. (10)

For the special case of an isotropic medium, εij has only two independent components.
Concentrating on longitudinal plasma oscillations we can replace kikj εk,ij → k2εk, and the
potential (10) and its Fourier transform become

φk(ω) =
4πeanak(ω)

k2εk(ω)
, (11a)

φ(r, t;va) =
∫

d3k

2π2

ea

k2

eik(r−[r0a+vat])

εk(kva)
. (11b)

This result may be immediately generalized to the case of many particles. Indeed, due to
linearity of Maxwell’s equations, the resulting total potential is simply the sum of all potentials
of the type (10), i.e. φtot(r) =

∑N
a=1 φ(r − r0a;va). From this we obtain the total potential

energy entering Newton’s equations (5)

V eff
i (r, t) =

Ni∑
a=1

eaφ(r − r0a;va). (12)
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We underline that this is an exact result fully including the ion-ion interaction (assuming point
ions) in the presence of a partially ionized plasma the properties of which are included in the
dynamic dielectric function εk(ω). The result is applicable to equlibrium and can be extended
to weakly nonequilibrium plasmas in the sense of a local approximation with a time-dependent
distribution function f(t) where εk(ω) → εk(ω, t) ≈ εk(ω, [f(t)]) [12]. In particular, the case of
streaming electrons with a macroscopic velocity ue is trivially included by replacing on the r.h.s.
of Eq. (11b) va → va − ue. In the special case of absence of streaming, the static limit of the
dielectric function is obtained, εk → (k2+κ2)/k2 and the pair potential of the ions becomes the
isotropic Yukawa potential, Vii(r) → e2

i e
−κr/r. In contrast, in the case of streaming charged

particles, the potential is anisotropic and non-monotonic and exhibits wake effects.
The result (12) equally applies to classical and quantum electrons and its quality is fully

determined by the accuracy of the dielectric function. We, therefore, now turn to the
computation of the quantum electronic dielectric function. Here we will assume that linear
response (weak external field) can be applied and include collision effects in relaxation time
approximation within the Mermin model [16].

4. Quantum Dielectric function
The Fourier transform of the dielectric function has, in linear response, the following general
form [12]

εq(ω̂) = 1− VqΠq(ω̂), (13)

where εq is a retarded (causal) function and is complex, with ω̂ = ω + iν, where ν is the total
collision frequency. Further, Πq(ω̂) denotes the longitudinal retarded polarization function. The
simplest approximation for Π is the collisionless limit – the random phase approximation (RPA)
or Lindhard polarization

Π0(q, ω̂) = 2
∫

d3Q

(2π)3
f

(0)
−,α − f

(0)
+,α

�ω̂ − �2Q · q/mα
, (14)

where ν → +0. f
(0)
±,α denotes a Fermi distribution at the argument Q ± q/2. An improved

result which takes into account electronic correlations (collisions) in a way that sum rules are
fulfilled was presented for classical systems by Rostoker and Rosenbluth [17]. The generalization
to quantum systems is due to Mermin [16], for a derivation see the appendix,

ΠM (q, ω̂) =
Π0(q, ω̂)

1 + i�Π̃ν0(q, ω̂)
. (15)

Further improvements of the Mermin result have been considered by various groups. Röpke
et al. have derived a Mermin-type expression which, besides particle conservation contains
energy conservation [19]. However, they found that the effect was small. Another modification
by this group was to include a frequency dependent collision frequency into the relaxation time
collision integral [20]. Finally, we mention that a selfconsistent nonequilibrium calculation within
Nonequilibrrium Green’s functions which fully included sum rule preservation has been recently
performed [21].

4.1. Dynamical screening and wake effects
The main motivation to include dynmical screening of the interaction between heavy particles
in a two-component plasma is its importance for nonequilbrium situations. One such case is the
existing of streaming light particles which causes wake effects which have a dramatic effect on
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the arrangement of heavy particles, e.g. dust particles in a complex plasma. This was discussed
in detail by Joyce and Lampe, cf. [22] and references therein. Wake effects in a quantum plasma
have also been considered by one group [23] who found an important influence on stopping power
of ions in a polarizable medium. However, these were only single particle effects.

5. Discussion
A new model for the simulation of dense quantum plasmas including dynamical screening of the
electrons, partial ionization and strong ion correlations has been developed. It is particularly
important for high density low-temperature plasmas, in situations where the ions form liquid
or solid-like structures and when the electrons are in nonequilibrium. Typical situations are
streaming electrons or plasma instabilities due to fast electrons or electromagnetic fields. The
proposed simulation scheme is based on classical molecular dynamics simulations where the
dynamical screening effects are incorporated within a linear response approach into the screening
of the ion-ion pair interactions. For the screening an extension beyond the (collisionless) RPA
model has been used which is due to Mermin and a strict derivation within quantum kinetic
theory has been given putting the original result of Ref. [16] on solid ground and critically
assessing its scope of applicability. Correlations could also be included via other approximations
such as the quasilocalized charge approximation [24].

We mention that in the present version of our model the charge state of the ions is
not selfconsistently computed but is used as an input. Generalizations along this line are
straightforward. Also, the co-existence of several charge states maybe included via a Saha
equation. The present discussion was for point-like ions. It maybe directly extended to ions
with an internal structure where the pair interaction deviates from pure Coulomb repulsion, e.g.
[25].

Let us briefly comment on the question how to include quantum effects in the pair interaction.
This could be of importance for astrophysical applications when the ion degeneracy parameter
χi approaches one. In this case an approximate treatment of ion degeneracy effects is sufficient
which can be included in the derivation of the classical equations of motion from the quantum
equation (3). As a result the ion pair potential is modified at small distances due to quantum
effects which remove the divergence. This problem was first studied by Kelbg and numerous
other authors. For a discussion of the Kelbg potential and improvements, see e.g. [26]. In using
the expression (11b) we assumed pointlike ions and neglected any finite ion extension. This can
be corrected in the final expression by replacing the Fourier transform of the Coulomb potential,
i.e. the factor 1/k2 in Eq. (11b), by the Fourier transform of the improved Kelbg potential [26]
or of any other appropriate quantum potential.

Acknowledgements
We acknowledge stimulating discussions with G. Joyce. This work is supported by the Deutsche
Forschungsgemeinschaft via grant LU 1586/1 and by the NSF/DOE Partnership in Basic Plasma
Science and Engineering under the Department of Energy award DE-FG02-07ER54946.

Appendix: Kinetic derivation of the Mermin polarization
In this appendix we give a rigorous and general derivation of the Mermin polarization
function (14) from quantum kinetic theory, which has not been given before. We start with
the collisionless case which leads to the well-known RPA result. It is presented here to set up
the notation and subsequently generalize it to include collisions. The first hierarchy equation
for a multi-component system reads, in mean-field approximation, cf. Eq. (1) with N = 1,

i�
∂fk,k′,α

∂t
− (εk,α − εk′,α)fk,k′,α − V

Na
〈k|[U eff

1,α, F1,α]|k′〉 = 0, (16)
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with the operator of the effective potential and the mean field potential

U eff
1,α = U1,α +W1,α, (17)

W1,α =
∑
β

nβTr2V1α,2βF2β . (18)

The normalization conditions for the density operator and the distribution function are

Nα〈k|F1,α|k′〉 = Vfk,k′,α, (19)

Nα =
Nα

V Tr1F1,α(t) = 2
∑

k

fkk,α(t), (20)

where V is the volume and the kinetic energy of particle species “α” in momentum state |k〉
is given by εk,α = �

2

2mα
k2. Eq. (16) is the nonlinear quantum Vlasov equation (time-dependent

Hartree equation).
Here we will concentrate on an unmagnetized plasma, so the external potential U is due to

an electrostatic potential and U eff
1,α = eα(φext+φind), where the induced potential is the solution

of Poisson’s equation, Δφind = −4πρind with the plasma particles acting as source. As in the
classical case φind functionally depends on the particle density and thus, on the distribution
function, giving rise to a nonlinear kinetic equation.

We start with a plasma without external fields, U ≡ 0. Then the plasma will be homogeneous
and all contributions to the induced potential cancel, due to charge neutrality, φind ≡ 0. We
expect that the plasma will be in a (local) thermodynamic equilibrium state which, for fermions,
e.g. electrons, is given by the Fermi function1

fk,k′,α = f
(0)
k,k′,α = f

(0)
k,αδk,k′ = fEQ

k,α δk,k′ (21)

fEQ
k,α =

[
eβ(εkα−μα) + 1

]−1
, (22)

where β = 1/kBT and μα(nα, T ) is the chemical potential, and the momentum delta function
arises due to spatial homogeneity.

We now assume that a weak electrostatic potential φext is turned on, perturbing the
equilibrium state. Weakness of the potential allows us to linearize the kinetic equation and
solve it with the linear response ansatz [quantities of first order in φext are denoted by the
superscript ”(1)”]

U eff
α (r, t) = U eff(1)

α (r, t), lim
t→−∞U eff

α (r, t) = 0, (23)

fk,k′,α(t) = f
(0)
k,k′,α + f

(1)
k,k′,α(t), (24)

lim
t→−∞ fk,k′,α(t) = f

(0)
k,k′,α.

Using this ansatz we can now evaluate the matrix elements of the commutator in Eq. (16).
Since the potential is of first order, for the density operator the zeroth order gives the dominant
contribution which is diagonal,

〈k|[U eff
1,α, F1,α]|k′〉 ≈ 〈k|[U eff(1)

1,α , F
(0)
1,α]|k′〉 (25)

= U
eff(1)
k,k′,α

Na

V
(
f

(0)
k′,α − f

(0)
k,α

)
. (26)

1 The only remaining contribution in Eq. (16) is the time derivative, i.e.
∂fk,k′,α

∂t
= 0. Therefore, as in the classical

case, any stationary distribution function can be used. The choice of the equilibrium distribution is based on
experience. Only in the case of collisions, relaxation processes (scattering) will lead to a unique selfconsistent
stationary solution.
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Inserting this result into the kinetic equation (16) and taking into account that f
(0)
k,k′α is time-

independent and diagonal, we obtain a closed equation for f
(1)
k,k′,α(t)

i�
∂f

(1)
k,k′,α

∂t
− (εk,α − εk′,α)f

(1)
k,k′,α − U

eff(1)
k,k′,α

(
f

(0)
k′,α − f

(0)
k,α

)
= 0, (27)

which is already a linear equation. Expanding the field into a Fourier integral of monochromatic
oscillations2

Uk,k′,α(t) =
∫

dω Ũk,k′,α(ω) e−i(ω+iδ)t, (28)

the same expansion will also apply to f
(1)
k,k′,α and U

eff(1)
k,k′,α.

Fourier transforming Eq. (27) and cancelling the common exponent yields the result for the
perturbation of the distribution,

f̃
(1)
k,k′,α(ω) =

f
(0)
k′,α − f

(0)
k,α

�(ω + iδ)− (εk,α − εk′,α)
Ũ

eff(1)
k,k′,α(ω). (29)

This is the general result for the linear perturbation to the distribtution function, and the time-
dependent expression follows by a back transform. In deriving (29) we have made no assumptions
on the space dependence of the external perturbation U .

In the following we consider an exciting field which is purely periodic in space without any
macroscopic spatial modulation, which can be expanded in a Fourier series Uα(r) =

∑
q Uqαeiqr.

Now introduce center of mass and relative momenta by (all quantities are vectors)

Q =
k + k′

2
, q = k − k′, or, vice versa, (30)

k = Q+
q

2
, k′ = Q − q

2
.

While the center of mass variable Q is related to spatial inhomegeneities, the relative momentum
q is directly related to small scale spatially periodic modulations. Thus, in the present case,
there will be no dependence on Q, i.e.

Uk,k′,α ≡ UQ+ q
2
,Q− q

2
,α −→ Uq (31)

and similarly for Ũ
eff(1)
k,k′,α(ω). In contrast, in the unperturbed quantities εk and f

(0)
k,α the momentum

arguments k and k′ remain. Therefore, to shorten the notation, in the following we will denote
Q±q/2→ ±. Via εk and f

(0)
k,α, the dependence on Q remains also in the perturbed distribution

function. Thus, we can rewrite the result (29) for a single Fourier component q of a periodic
monochromatic excitation

f̃
(1)
+,−,α(ω) =

f
(0)
−,α − f

(0)
+,α

�(ω + iδ)− (ε+,α − ε−,α)
Ũ eff(1)

q,α (ω). (32)

This is still not an explicit result for f̃ (1) because the function also appears in the effective
potential. To make further progress we consider the density disturbance and compute its Fourier
components

ñ(1)
q,α(ω) = 2

∫
d3Q

(2π)3
f̃

(1)

Q+ q
2
,Q− q

2
,α
(ω), (33)

2 δ is a small positive constant which assures causality, i.e. lim
t→−∞

Uk,k′ = 0.
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and the prefactor 2 accounts for the spin summation. Below, we will also need the current
density which is calculated in similar way

j̃(1)q,α(ω) = 2
∫

d3Q

(2π)3
�Q
mα

f̃
(1)

Q+ q
2
,Q− q

2
,α
(ω). (34)

Particle and current density are connected via the continuity equation

∂n(r, t)
∂t

+ div j(r, t) = 0. (35)

Since the unperturbed expressions are time and space independent we can replace the total
density and current density by the perturbed functions. The Fourier transform of this expression
then reads

ω ñ(1)
q,α(ω) = q · j̃(1)q,α(ω). (36)

We can now explicitly compute the density perturbation by inserting the distribution function
(32) into Eq. (33) and obtain

ñ(1)
q,α(ω) = ΠRPA

0α (q, ω̂) Ũ eff(1)
q,α (ω), (37)

ΠRPA
nα (q, ω̂) = 2

∫
d3Q

(2π)3

(
�Q
mα

)n f
(0)
−,α − f

(0)
+,α

�ω̂ − [ε+,α − ε−,α]
, (38)

where we defined ω̂ = ω + iδ. Here ΠRPA
nα denotes the n-th moment of the polarization function

ΠRPA
0α .
The simplest way to obtain the longitudinal quantum dielectric function is to use the

continuity equation and relation (13) which is valid for classical and quantum plasmas.
Computing the total electric charge density perturbation

ρ̃(1)
q (ω) =

∑
α

qαñ(1)
q,α(ω), (39)

and using the relation of the effective potential to the total electrostatic potential

Ũ eff(1)
q,α (ω) = qαφ̃q(ω), (40)

we only need to insert (39) with the result (37) into (11a) and obtain

εl,RPA(k, ω̂) = 1−
∑
α

Ṽαα(k)ΠRPA
0α (k, ω̂). (41)

This is the longitudinal retarded dielectric function for a collisionless quantum plasma. In using
the superscript “RPA” for the dielectric function and the polarization (14) we indicated that
this is the result in the so-called random phase approximation (RPA) which is als frequently
called Lindhard polarization. Note, however, that this result was obtained by many authors
independently. The first, apparently were Klimontovich and Silin [27, 28], followed by [29, 30].

We now proceed to improve this result by including correlation effects. The quantum kinetic
equation in momentum representation, with collision integral reads

i�
∂fk,k′,α

∂t
− (εk,α − εk′,α)fk,k′,α − V

Nα
〈k|[U eff

1,α, F1,α]|k′〉 = Ik,k′,α, (42)
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Prior to external perturbation, we again assume a homogeneous state with the distribution given
by a diagonal matrix fk,k′,α = f

(0)
k,k′,α = f

(0)
k,αδk,k′ , and the same applies to the collision integral,

Ik,k′,α = I
(0)
k,k′,α = I

(0)
k,αδk,k′ . Then the kinetic equation (42) simplifies to a diagonal equation

i�
∂f

(0)
k,α

∂t
= I

(0)
k,α ≡ Ik,α[f

(0)
k,α], (43)

where in the collision integral the unperturbed distribution function has to be used. Following
Mermin [16] we use the relaxation time approximation for the collision integral which is
constructed by the ansatz (we drop all arguments)

IRTA[f ] ≡ −1
τ

(
f − fEQ

)
, f(0) = f0. (44)

The solution of this equation, together with the initial condition at t = 0, is f(t) = f0e
−t/τ +

fEQ[1 − e−t/τ ], showing the decay of the initial state and the approach to the asymptotic
state. Here, τ is the total relaxation time due to all scattering processes which has to be
computed from a separate kinetic theory or taken from experiment. We use a simple static
approximation where τ is frequency independent. Despite its simplicity, this approximation
allows to achieve a selfconsistent relaxation of the distribution function to the equilibrium state.
While we expect that fEQ will be a Fermi function, we will not need the explicit form of the
equilibrium distribution below.

We now again consider a weak perturbation by a longitudinal field Ua = qaφ
ext,

U eff
α (r, t) = U eff(1)

α (r, t), lim
t→−∞U eff

α (r, t) = 0,

fk,k′,α(t) = f
(0)
k,k′,α + f

(1)
k,k′,α(t), (45)

lim
t→−∞ fk,k′,α(t) = f

(0)
k,k′,α.

The equation for the perturbation of the distribution reads, in first order,

i�
∂f

(1)
k,k′,α

∂t
− (εk,α − εk′,α)f

(1)
k,k′,α − U

eff(1)
k,k′,α ·

(
f

(0)
k′,α − f

(0)
k,α

)
= I

(1)
k,k′,α, (46)

lim
t→−∞ fk,k′,α(t) = f

(0)
k,αδk,k′ .

Here, U eff(1) is again obtained by replacing fk,k′ by f
(1)
k,k′ , whereas I(1) is obtained by keeping

in all appearances of the electron distribution functions only terms of first order in f (1) [21].
In case of the relaxation time approximation which is linear in f we just have to use f

(1)
k,k′ . In

order to find the explicit expression for I(1) we consider the long time limit of the system. The
complete asysmptotic solution of the original kinetic equation will be the sum of the zero and
first order terms, i.e. fEQ and the asymptotic solution for f

(1)
k,k′ which we will denote f

(1)∞
k,k′ . To

find this solution assume a purely periodic space dependence of U . Using center of mass and
relative momenta Eq. (46) becomes

i�
∂f

(1)∞
k,k′,α

∂t
− (ε+,α − ε−,α)f

(1)∞
k,k′,α − U eff(1)∞

q,α ·
(
f

(0)
−,α − f

(0)
+,α

)
= I

(1)∞
k,k′,α. (47)
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Since we are looking for a stationary solution, the time-dependence should vanish. Also, we
expect that collisions have relaxed to zero, i.e. I

(1)∞
k,k′,α = I

(1)
k,k′,α[f

(1)∞] = 0, resulting in

lim
t→∞ f

(1)
k,k′,α = f

(1)∞
k,k′,α =

f
(0)
+,α − f

(0)
−,α

ε+,α − ε−,α
U eff(1)∞

q,α . (48)

Note that also the effective potential carries the superscrtipt ∞ since it also depends on this
solution.

Performing a Fourier transform with respect to time, according to Eq. (28) we obtain

f̃
(1)∞
k,k′,α =

f
(0)
+,α − f

(0)
−,α

ε+,α − ε−,α
Ũ eff(1)∞

q,α , ω = 0, (49)

where, as a result of the long-time limit, this form is restricted to zero frequency.
Now we can construct the first order correction to the collision term in Eq. (46). Since f (0)

relaxes towards fEQ, in Eq. (44) only the difference of f (1) and f (1)∞ remains. Multiplying by
i� we obtain

Ĩ
(1)
k,k′,α(ω) = − i�

τ

{
f̃

(1)
k,k′,α(ω)−

f
(0)
+,α − f

(0)
−,α

ε+,α − ε−,α
Ũ eff(1)∞

q,α

}
, (50)

which can be inserted in Eq. (46) after Fourier transform to frequency space3 yielding the solution

f̃
(1)
k,k′,α(ω) =

{
Ũ eff(1)

q,α − i�ν
Ũ

eff(1)∞
q,α

ε+,α − ε−,α

}
f

(0)
−,α − f

(0)
+,α

�ω̂ − [ε+,α − ε−,α]
, (51)

where we defined ω̂ = ω + iν and used δ → 0 due to the existence of a finite collisional
damping ν = τ−1. This result is a straightforward extension of the collisionless random phase
approximation, cf. Eq. (32). Scattering effects (terms proportional to ν) are contained in
two places: first, the frequency in the denominator is replaced by a complex frequency and,
second, there appears an additional contribution proportional to U eff(1),∞ in the numerator
which renormalizes the Fourier component of the effective potential.

Eq. (51) is not an explicit solution for f̃ (1) since this function also appears in the effective
potential. To solve this problem and compute the dielectric function, we proceed as in the
collisionless case. We first compute the Fourier component of the density disturbance according
to Eq. (33) and also of the current density, using Eq. (34) and the definition (38),

ñq,α(ω) = ΠRPA
0α (q, ω̂)Ũ eff(1)

q,α (ω)− i�ν Ũ eff(1)∞
q,α Πν0α(q, ω̂), (52)

j̃q,α(ω) = ΠRPA
1α (q, ω̂)Ũ eff(1)

q,α (ω)− i�ν Ũ eff(1)∞
q,α Πν1α(q, ω̂), (53)

where we used the definition (41) of the RPA polarization and introduced in analogy to (38) a
modified polarization function which arises from the collisions

Πνnα(q, ω̂) = 2
∫

d3Q

(2π)3

(
�Q
mα

)n 1
ε+,α − ε−,α

× f
(0)
−,α − f

(0)
+,α

�ω̂ − [ε+,α − ε−,α]
. (54)

Eq. (52) indicates that collisions change the particle density (second term) compared to the
RPA result. As a consequence of the local density conservation law also the current density has
to change, cf. Eq. (53).

3 We again assume a spatially periodic excitation.
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Eqs. (52) and (53) contain the still unknown function Ũ eff(1)∞ which we determine using
the continuity equation (36). We now transform �q times the integral Π1α, by adding and
subtracting, under the integral, �ω̂. Taking into account that ε+,α − ε−,α = �

2Q · q/mα, we
obtain the identity

�q ·ΠRPA
1α (q, ω̂) = 2

∫
d3Q

(2π)3
(
f

(0)
−,α − f

(0)
+,α

)
+ (�ω + i�ν)ΠRPA

0α (q, ω̂). (55)

Assuming that the field-free distribution depends only on the modulus of the momentum, i.e.
f

(0)
−k,α = f

(0)
k,α the integrals over f− and f+ cancel. The same transformation is possible for the

integral Πν1α with the result

�q ·Πν1α(q, ω̂) = ΠRPA
0α (q, 0) + (�ω + i�ν)Πν0α(q, ω̂). (56)

Collecting the results (55) and (56) together we may rewrite Eq. (53),

�q · j̃q,α(ω) = �(ω + iν)ΠRPA
0α (q, ω̂)Ũ eff(1)

q,α

−i�ν
[
ΠRPA

0α (q, 0) + (�ω + i�ν)Πν0α(q, ω̂)
]
Ũ eff(1)∞

q,α

= �ω · ñq,α(ω) +

+ i�ν
{
ΠRPA

0α (q, ω̂)Ũ eff(1)
q,α − Ũ eff(1)∞

q,α

[
ΠRPA

0α (q, 0) + i�νΠν0α(q, ω̂)
]}

. (57)

Evidently, the continuity equation (36) is fulfilled if the terms on the last line (in the curley
brackets) vanish which yields the required condition on Ũ eff(1)∞

Ũ eff(1)∞
q,α (ω) =

ΠRPA
0α (q, ω̂)Ũ eff(1)

q,α (ω)
ΠRPA

0α (q, 0) + i�νΠν0α(q, ω̂)
=

ñq,α(ω)
ΠRPA

0α (q, 0)
. (58)

With this result we can now eliminate Ũ eff(1)∞ from all expressions. Inserting it into (52),
we can solve for the density perturbation which – as in the collisionless case, cf. Eq. (37) – is
proportional to the effective potential, however, with a modified coefficient

ñq,α(ω) = ΠM
α (q, ω̂)Ũ eff(1)

q,α (ω), (59)

Using the result (59) we immediately obtain the dielectric function. Computing the total charge
density to ρ̃q(ω) = Φ̃q(ω)

∑
α q2

αΠ
M
α (q, ω̂) and inserting the result into Eq. (11a) we obtain

εl,M (k, ω) = 1−
∑
α

Ṽαα(k)ΠM
α (k, ω). (60)

This is the longitudinal quantum dielectric function including collisions in relaxation time
approximation. This result was first obtained by Mermin [16], therefore we use the superscript
“M”. The formal structure of this expression is the same as in the collisionless and classical
cases, it is a general property of linear response theory. The different physical approximations
are solely contained in the longitudinal polarization function, the Mermin polarization,

ΠM
α (q, ω̂) ≡ ΠRPA

0α (q, ω̂)
1 + i�νΠ̃ν0α(q, ω̂)

(61)

where we introduced the definition

Π̃ν0α(q, ω̂) ≡ Πν0α(q, ω̂)
ΠRPA

0α (q, 0)
=

1
�ω

[
ΠRPA

0α (q, ω̂)
ΠRPA

0α (q, 0)
− 1

]
. (62)
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In the last equality we have eliminated the function Πν0α and expressed it in terms of the RPA
polarization where use has been made of the identity �ωΠν0α(q, ω̂) = ΠRPA

0α (q, ω̂)− ΠRPA
0α (q, 0).

Obviously, the collisionless limit of the Mermin dielectric function, i.e. ν → 0 and ω̂ → ω + iδ,
is given by the random phase approximation. The classical limit of ΠM

α gives the result derived
from the the Bhatnagar/Gross/Krook collision integral which was first obtained by Rostoker
and Rosenbluth [17].
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