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Abstract
Spontaneous, correlation-driven structure formation is one of the most
fundamental collective processes in nature. In particular, particle ensembles
in externally controlled confinement geometries allow for a systematic
investigation of strong correlation and quantum effects over broad ranges of
the relevant trap and plasma parameters. An exceptional feature inherent to
finite systems is the governing role of symmetry and surface effects leading to
similar collective behaviour in physical systems on vastly different length and
energy scales. Considering (i) confined complex (dusty) plasmas and (ii) charge
asymmetric bilayers, the effective range of the pair interaction emerges as a key
quantity taking effect on the self-organized structure formation. Additional
interest arises from the possible mass asymmetry of the plasma constituents
in bilayers. Translating the results from (unconfined) 3D plasmas to bilayer
systems, it is shown that the critical mass ratio required for crystallization of
the heavy plasma component can be drastically reduced such that this effect
becomes experimentally accessible.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Collective behaviour in many-particle systems with Coulomb interaction is a problem of high
relevance in many fields of physics, chemistry, biology and beyond. Prominent examples
are electrolytic solutions, dense plasmas, ultracold ions and atomic gases in traps, e.g. [1, 2],
complex (dusty) plasmas [3–8], electrons and excitons in semiconductors [9–13] or folded
small protein structures in biochemical systems [14]. It is remarkable that, despite the highly
different nature and length scales of these systems, the occurrence of cooperative effects such
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as structure formation or collective dynamic properties is captured by just two dimensionless
parameters, which measure the ratio of the mean interaction energy Eint to the average kinetic
energy Ekin in the system,

� ≡ Q2

a kBT
rs ≡ a

aB
∼ Q2 m a. (1)

Here, � is the coupling parameter of a classical Coulomb system with charge Q and mean
interparticle particle distance a ∼ n−D (n is the system density and D = 1, 2, 3 its
dimensionality). In quantum systems � is replaced by the Brueckner parameter rs [15] which
does not involve temperature T but the Bohr radius, aB = 4πεh̄2/(mQ2). In traditional
plasmas Eint is small compared with Ekin. In contrast, when � (or rs) exceed unity, correlation
effects start to dominate the plasma behaviour giving rise to spatial ordering. In particular,
when � � 100 (or rs � 100) crystal-like ordering emerges as was observed in trapped ions or
dusty plasmas. The behaviour of these plasma crystals was studied in great detail over the last
two decades, see, e.g. [16] for a recent overview.

Here we are interested in the question to what degree the correlated plasma behaviour
and crystallization, in particular, can be externally controlled. We consider two examples.
The first are spherical crystals in dusty plasmas (‘Yukawa balls’) and the second is a two-
component plasma in two spatially separated layers. While in the former, control can be
achieved via an external trapping potential and the surrounding plasma (screening strength),
in the latter case, an additional control is offered by the layer separation and the choice
of the semiconductor material which allows us to control the mass ratio of the two charge
species.

2. Controlling plasma crystallization in traps

As an example of spatially confined plasma crystals we consider Yukawa balls [5] which
consist of concentric crystal shells strongly resembling trapped ion crystals, e.g. [1, 6], with
the key difference that the pair interaction between the particles forming the crystal is screened
by the electrons and ions of the ambient plasma [7]. Despite screening, in a dusty plasma the
range of strong coupling is extended to temperatures many orders higher since the individual
particles are not singly but highly charged. In fact, according to equation (1), by increasing
the individual dust grain charges to Q = 1000e . . . 10 000e the repulsive interaction amongst
these plasma constituents can be tuned such that plasma crystallization becomes observable
even under room temperature conditions. The Hamilton function of N identical dust particles
reads as

H =
N∑

i=1

p2
i

2m
+

N∑
j>i

Q2e−κ|ri−rj |

4πε|ri − rj | +
N∑

i=1

U(ri ), (2)

where ri denotes the coordinate of the ith particle. In the experiments of Arp et al [5] ion flow
and wake effects were found to be negligible whereas the total confinement potential produced
by electrostatic potentials, thermophoresis and gravity is well approximated by an isotropic
parabolic potential (which is assumed to be independent of screening), U(ri ) = mω2

0ri
2/2

[17]. Comparison with molecular dynamics (MD) simulations [7] allowed to verify that this
model captures the dominant properties of the Yukawa balls: as in the experiment, the dust
particles form concentric shells which are almost equally spaced, and even the shell populations
could be well reproduced by model (2). This is seen in the left part of figure 1 which shows
the shell populations for 43 experimentally observed Yukawa balls and molecular dynamics
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Figure 1. Left: experimental (symbols) and simulation (lines) shell populations Ns of harmonically
confined dust crystals as a function of the system size N2/3. The simulation results (lines) are
obtained for different screening parameter κ and show that the particles are redistributed from the
outer shell to inner shells with increased screening. From [7]. Right: three particle correlation
function for 3D plasma crystals with N = 500, � = 1000, and screening parameter κ = 0 (top)
and κ = 3.8 (bottom). White (black) denotes areas of high (low) correlation; r1 is integrated out.

simulation results for several values of the Debye screening parameter κ (which is the only
free parameter in the simulations).

The most remarkable finding is a high sensitivity of the shell occupation numbers to the
precise value of κ (range of the interaction potential). A screened interaction changes the
structure of the cluster such that the occupation numbers on the inner (outer) shells gradually
increase (decrease). This implies that a Yukawa system contains a smaller (or equal) number
of particles on the outer and a higher (or equal) number of particles on the inner shell than
an unscreened Coulomb system with the same N . Therefore, the structural fingerprint allows
for a novel non-invasive diagnostic to determine the Debye screening length on the basis of
the observed shell occupation numbers measured in experiments. Best agreement with the
measurements is found for κr0 ≈ 0.6 1 which agrees well with independent estimations [18].
The reason for the change in the shell population number is a screening-induced radial density
gradient, which leads to a (with κ increasing) density decay toward the cluster surface to
establish a (local) force equilibrium [19, 20].

The formation of distinct shells is a typical finite-size effect reflecting the geometrical
constraints of the external confinement, which leads to a striking sensitivity with regard to
the exact particle number N . By simply adding or removing a single-particle qualitative
transformations of the collective interplay can be achieved, resulting in drastically different
physical properties [9, 21]. In allusion to the periodic table of the chemical elements, periodic
Mendeleev-type tables have been extensively studied, in particular for parabolically confined
Coulomb [6, 22] and Yukawa [3, 23] systems.

Approaching large cluster sizes the dependence on the precise particle number vanishes,
the shells break up and finally regular volume order prevails [24, 25]. In the right part of

1 Sources of errors such as fluctuations of charge and temperature were found to be small [28] and also the occurrence
of metastable states in the experiments has a negligible influence on this result.
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figure 1 we present first results of the three particle correlation function (TPCF) 2, which
gives direct insight into the internal structure of a Yukawa (κ = 3.8) and a Coulomb (κ = 0)
cluster of intermediate size N = 500 and � = 1000. Comparing both systems, the first
observation is that the reduced repulsion for κ > 0 leads to a strong compression of the entire
cluster. In the Coulomb case we find five distinct shells. Due to the quadratic increase in the
confinement strength in the radial direction the (thermal) delocalization on the cluster surface
is strongly reduced. Seven (almost oppositely arranged) particles in the innermost shell result
a strong peak close to 180◦. Also the other four shells show several sharp peaks that reflect the
high internal symmetry of the Coulomb cluster. Upon increase in κ , the screened interaction
becomes short-ranged and the TPCF reveals the strong competition between bulk and spherical
order. While in the outer region of the Yukawa cluster a pronounced shell structure remains, in
the cluster core (where the influence of the external confinement is weaker) the emergence of
several close sub-shells is observed, which marks the appearance of a bulk-like (close-packed)
symmetry. The formation of bcc order in the bulk of Coulomb crystals is expected to begin
for systems with N � 104 particles [25].

It should be noted that a change in the effective range of the interaction potential has not
only influence on the structural properties [23], but was also found to have a direct impact on the
dynamical and spectral features [16, 21, 26] as well as on the cluster melting behaviour [8, 27].

3. Correlation control in charge asymmetric bilayers

Bilayers containing spatially separated negative (e) and positive (h) charge carriers are an
utmost versatile two-component system, standing in between neutral and non-neutral Coulomb
systems on the one hand, and between two-dimensional and three-dimensional systems on
the other. Possible realizations include electron–ion plasmas and electron–hole systems in
semiconductors. Quantum bilayers can be realized by separating electrons and holes in two
coupled (well insulated) quantum wells (QWs) or in a single QW where charge separation is
achieved by applying a strong electric field perpendicular to the well plane [29]. A fascinating
property of e–h quantum bilayers arises from the additional control of correlation effects by
(a) varying the separation d and (b) by the choice of the two components.

(a) Variation of d allows for a continuous transition from (starting from large d): (i) two weakly
coupled Coulomb layers to an effective single layer system [21], (ii) free particles to e–h
bound states (indirect excitons) with an effective dipole–dipole interaction and (iii) Fermi
statistics to Bose statistics (composite bosons). This will be discussed in section 3.1.

(b) In a two-component plasma an additional degree of freedom is provided by the charge ratio
and the mass ratio of the components which have a strong influence on the observed phases
[30]. Here we concentrate on the effect of the mass ratio M = mh/me assuming symmetric
charges −qe = qh. Variation of M allows us to tune the relative importance of quantum
effects in both components via the thermal DeBroglie wavelength �a = h[2πmakBT ]−1/2,
a = e, h. At the same time the strength of correlations in the two components is modified
via the coupling parameter rsa

. This will be discussed in section 3.2.

In the following we will discuss the control of correlations in bilayer systems, in particular
in view of crystallization phenomena, by these two parameters.

2 The TPCF gives the probability of an arbitrary particle in the cluster to ‘see’ another particle at position (r2, φ)

with respect to the trap centre (in spherical coordinates). While the name TPCF follows the definition in extended
macroscopic systems, here we use the trap centre instead of a third particle as the third reference point to take into
account the symmetry of the confined system.
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3.1. Strongly correlated indirect excitons in quantum wells

The possibility of confinement and manipulation of excitons in potential traps has attracted
considerable interest in the last two decades because these systems are expected to exhibit
collective quantum phenomena such as Bose–Einstein condensation and superfluidity, e.g.
[10, 13]. A suitable electrode geometry which separates the charge carriers3 and at the same
time creates a parabolic confinement for the neutral excitons within the QW plane can be
generated by a fine tip electrode due to the quantum-confined Stark effect [29]. This permits
for a voltage-controlled transition from the direct to the spatially indirect exciton (IE) regime
providing high flexibility in manipulating and controlling the exciton parameters: tuning the
applied voltage and the electrode to sample distance the depth and the steepness of the in-plane
confinement can be independently changed. This allows us to reach very high exciton densities
which in combination with the induced repulsive dipole moment brings the IEs to a strongly
correlated state.

For a first principle description of IEs in the moderate (bosonic) density regime at finite
temperature we use path integral Monte Carlo (PIMC) simulations 4. The consideredN -particle
Hamiltonian,

Ĥ = Ĥe + Ĥh +
N∑

j>i

e2

4πε
√

(ri − rj )2 + (zi − zj )2
, (3)

captures all Coulomb interaction contributions without simplification. The N = Ne + Nh

single-particle contributions are given by

Ĥe(h) =
Ne(h)∑
i=1

(
− h̄2

2m∗
e(h)

∇2
ri

+
m∗

e(h)

2
ω2

0r
2
i + Ue(h)

)
, (4)

which include the kinetic (band) energy, the harmonic in-plane confinement with the effective
trap frequency ω0 and an additional external potential Ue(h), which combines the effect of
the QW confinement (presented as a square well) and the applied electric field5. In the
simulations we use a fixed mass ratio, corresponding to realistic electron (hole) masses
m∗

e(h) [29].
Figure 2 represents typical IE density distributions obtained in the simulations and

demonstrates a temperature-driven crystallization of excitons (the average density is n =
1.5 × 1010 cm−2): at T = 3.35 K, the IEs are in a gas state and delocalized within the trap due
to thermal fluctuations. (i) By lowering temperature to 830 mK, the excitons become strongly
correlated and enter a radially ordered quantum state. Due to the concentric shape of the
confinement, the Nx = 56 IEs arrange themselves on four shells. (ii) Further lowering of
temperature to 210 mK leads to a full freeze-out of the thermal fluctuations, only (zero-point)
quantum fluctuations prevail. The repulsive inter-exciton interaction is capable of governing
the strong quantum fluctuations and establishes a localization of excitons within the shells.
The PIMC results clearly reveal the existence of a bosonic Wigner nano-crystal with a regular
hexagonal 2D Wigner lattice in the trap centre (where the geometrical constraints of the external
confinement are reduced). The distinct peaks in the diffraction patterns, obtained from the

3 The main issue of excitons is their finite lifetime. One possibility to considerably lower the spontaneous
recombination probability of excitons is to reduce the e–h wave function overlap by spatial separation of electrons
and holes [31].
4 For implementation details and further references see [20].
5 The considered effective e–h pair separation of d = 20 nm (6.6aB) can be produced by an electric field of strength
Ez = 20 kV cm−1 in a single ZnSe-based quantum well of L = 30 nm width [29].
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Figure 2. Temperature-driven phase transition of (a)–(d) Nx = 56, (e) Nx = 130 harmonically
trapped indirect excitons in a 30 nm wide ZnSe-based quantum well. Top row: density plots for the
temperatures: 13.6 K, 3.4 K, 830 mK and 210 mK (from left to right). Due to strong inter-exciton
correlations highly ordered quantum states, including a bosonic Wigner nano-crystal, are observed.
Partial exciton delocalization is a result of quantum fluctuations and Bose statistics (‘cold’ melting).
Plotted area: A = 130 × 130a2

B [(e) 170 × 170a2
B]. Bottom row: corresponding Bragg diffraction

patterns exhibiting the degree of order in a system by measuring the density–density correlations.
The patterns give a clear evidence for a phase transition in the mesoscopic system. (Diffraction
intensity is logarithmically scaled.)

spatial 2D Fourier transform of the time averaged exciton density distribution n(r), give a
clear evidence for a phase transition in this mesoscopic system6 [33].

The observed two-stage transition process is a well-known phenomenon in confined
(classical as well as quantum) few-particle systems, e.g. [8, 9, 12]. This is due to the fact
that the confinement induced radial energy barriers are considerably higher than the intrashell
energy barriers separating the repelling particles. Because of the short range of the dipole
potential, the mesoscopic quantum crystal of IE appears at higher densities than the electron
(Coulomb) Wigner crystal, i.e. the crystal is stabilized. The literature value for the transition
from the Fermi liquid state to the electron Wigner crystal phase is re

s ≈ 35 [9, 12], whereas
the crystal of dipolar excitons is already found at rx

s ≈ 25.
It should be noted that such crystalline islands in parabolic traps can exist only in small

systems with Nx � 103. The reason is an inhomogeneous density profile, which is caused
by the short range character of the dipole potential (a similar effect is observed for Yukawa
balls, see section 2). Hence, the increase in Nx results in an increasing exciton density in
the trap centre. The 2D exciton crystal is found to exist only in a narrow density interval,
n1 � n � n2 [10, 11]. Thus we expect to observe crystalline structures in a typical experiment
with a macroscopic number of excitons only in a certain region of the trap, where the local
density n(r) matches the condition: n1 � n(r) � n2.

In figure 3 we present self-consistent Hartree–Fock (HF) ground state results for two
coupled layers of spin-polarized (fermionic) electrons and holes7. It is shown how an ideal
trapped quantum system (d = 0) evolves to a strongly coupled one if the layer separation d

is increased, i.e. an effective dipole–dipole repulsion is turned on. Then, the mutual interplay
of attractive interlayer and repulsive intralayer Coulomb forces leads to a localization of

6 The classification follows the International Union of Crystallography (IUC) which redefined the term ‘crystal’ to
mean ‘any solid having an essentially discrete diffraction diagram’ in 1991 [32].
7 For implementation details of the applied Hartree–Fock method see [20, 21].

6



Plasma Phys. Control. Fusion 52 (2010) 124013 P Ludwig et al

Figure 3. Hartree–Fock ground states of Ne(h) = 10 electrons and holes in a coupled (mass
symmetric) bilayer system indicating a phase transition from a Fermi liquid to strongly coupled
state upon increase in e–h separation d = λ×12πεh̄2/(e2me(h)) and λ = 1.5, 3.5, and 8.0 (from top
to bottom). Left: accumulated N -particle density ρe(h)(r). Right: corresponding densities of the
10 energetically lowest single-particle orbitals ρ

e(h)
i (r) (identical for electrons and holes). Note

that the 10 high-density spots of the N -particle density for λ = 8 do not necessarily correspond to
the single particles themselves as the configuration appears as a superposition of all orbitals.

states and an essential stabilization of the many-particle quantum system. Moreover, the
HF results clearly demonstrate that, even in the Wigner crystal phase where the density shows
strong peaks, the single density peaks do not necessarily correspond one-to-one to single
particles, but rather the single-particle orbitals extend over the entire cluster. This means
with respect to the exciton Wigner crystal that the identification of single excitons (individual
exciton wave packets) is not obvious and may lead to misinterpretations due to ‘matter wave
overlap’ [21].

3.2. Hole Wigner crystallization in mass-asymmetric e–h bilayers

In the following we concentrate on the second parameter in question which (besides
temperature, density and layer separation) has a significant influence on many-particle
correlation effects in e–h bilayers: the effective mass ratio M = mh/me. As was recently
predicted for a bulk semiconductor, holes undergo a phase transition to a crystalline state if the
mass ratio exceeds a critical value of Mcr = 80 [30]. At the same time the electrons are—due
to their smaller mass—strongly degenerate and form a Fermi gas or liquid. However, this
high value of Mcr complicates the search for experimental evidence of the hole Wigner crystal
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Figure 4. Left: hole–hole (top) and e–h (bottom) pair distribution functions for a macroscopic
bilayer with the mass ratios M = 1, 3, 4, 5, 10, 20 (the maxima increase with increasing M). Note
the alternating location of maxima and minima of ghh and geh. Right: decay of the amplitude of
the maxima and minima of the hole correlations (|ghh − 1|) for the seven mass ratios. From [34].

since the e–h mass ratio of a typical semiconductor is on the order of 10 8. For this reason,
it is interesting to analyze the effect of the mass ratio Mcr on hole crystal formation in an e–h
bilayer system, where Mcr depends on the layer separation d. The layer separation d = 20aB

is chosen such that the repulsive intralayer interaction and attractive interlayer interaction are
on the same energy scale, i.e. the system shows real 3D behaviour. The complicated overlap
of Coulomb interactions and quantum effects of both, electrons and holes, are treated on first
principles by PIMC methods [34].

In figure 4 (left part) we show the hole–hole pair distributions ghh for a macroscopic
bilayer system with periodic boundary conditions at low temperature where thermal effects
are negligible. The mass ratio M is varied between 1 and 20. Since the average particle density
is constant (the in-plane density parameter is rs = 10), the position of the first peak of ghh is
practically independent of M . In contrast, the general behaviour of ghh changes significantly:
for M � 4 there are clear oscillations typical for the solid phase. Even the third and fourth
peaks are well resolved. These oscillations become rapidly damped by reducing M to 3 and
below, here ghh shows liquid-like features.

The effect of the interlayer correlations for the stability of the hole crystal is apparent from
the e–h pair distribution geh (see bottom left part of figure 4). For the symmetric case, M = 1,
and also for M = 3 the electrons reside with the highest probability just below the holes. The
modulation depth is around 2% only because of the high electron degeneracy (delocalization).
This means that these peaks cannot be associated with bound states (indirect excitons) since
the electron density is well above the Mott density nMott where excitons break up. For larger
mass ratios, M � 4, a completely different behaviour of geh emerges. Now, the maximum of
geh vanishes at zero distance, and the function exhibits oscillations. The electron density is
modulated due to the presence of the hole crystal with maxima located in between the holes
which become systematically more pronounced when M increases. The (dis-)appearance of
these oscillations of geh indicates a phase transition in the asymmetric bilayer system which is
more clearly seen in ghh.

8 A further issue is the relatively short radiative lifetime in the case that the e–h wavefunctions are not spatially
separated as in the case of indirect excitons, see section 3.1.
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The peak height (amplitude) of ghh as a function of the peak position rhh (figure 4, right
part) clearly shows a change in the correlation decay law with M . The change from a ‘liquid’
state with exponential correlation decay (for M � 3) to a power law decay (for M � 4) signals
a Kosterlitz–Thouless transition to a quasi-long range order (solid-like). Hence, the critical
mass ratio at which quantum melting of the hole crystal takes place is around Mcr ≈ 3.5 and
is much smaller than the value of Mcr ≈ 80 in a 3D bulk system [30]. This result underlines
the remarkable additional control of correlation phenomena in a bilayer system by variation
of the layer separation d . An experimental observation of hole crystallization with standard
semiconductor materials should be feasible.

4. Conclusions

In this paper we have discussed Coulomb crystallization in strongly correlated plasmas.
Considering two examples (i) Yukawa balls in dusty plasma and (ii) charge asymmetric bilayers,
our special interest was devoted to the possibilities to externally control plasma crystallization.
In the former, we have addressed the question of how Debye shielding and finite-size effects
influence the structural properties of these systems. In the second example, we have shown
that there exist two independent ways to control crystallization: via variation of d (exciton
crystallization) and via variation of the mass ratio M (hole crystallization). While we have
not covered the whole phase diagram, it is clear from these examples that there exists a rich
variety of ways to control correlation phenomena. Due to the high scalability of Coulomb
systems, we expect that these results will also be of interest to other types of strongly coupled
multi-component plasmas.
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